METRISABILITY OF TWO-DIMENSIONAL PROJECTIVE STRUCTURES

被引:0
作者
Bryant, Robert [1 ]
Dunajski, Maciej [2 ]
Eastwood, Michael [3 ]
机构
[1] Math Sci Res Inst, Berkeley, CA 94720 USA
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[3] Australian Natl Univ, Sch Math Sci, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
MANIFOLDS; GEOMETRY; METRICS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We carry out the programme of R. Liouville [19] to construct an explicit local obstruction to the existence of a Levi-Civita connection within a given projective structure [Gamma] on a surface. The obstruction is of order 5 in the components of a connection in a projective class. It can be expressed as a point invariant for a second order ODE whose integral curves are the geodesics of [Gamma] or as a weighted scalar projective invariant of the projective class. If the obstruction vanishes we find the sufficient conditions for the existence of a metric in the real analytic case. In the generic case they are expressed by the vanishing of two invariants of order 6 in the connection. In degenerate cases the sufficient obstruction is of order at most 8.
引用
收藏
页码:465 / 499
页数:35
相关论文
共 24 条
[1]  
[Anonymous], 1896, Determination des invariants ponctuels de l'equation differentielle ordinaire du second ordre
[2]   Prolongations of geometric overdetermined systems [J].
Branson, Thomas ;
Cap, Andreas ;
Eastwood, Michael ;
Gover, A. Rod .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2006, 17 (06) :641-664
[3]  
BRYANT R, 1995, CONF PROC LECT NOT G, V4, P1
[4]  
Bryant R.L., 1991, MATH SCI RES I PUBLI
[5]  
BRYANT RL, HOMOGENEOUS PROJECTI
[6]   A solution of a problem of Sophus Lie: normal forms of two-dimensional metrics admitting two projective vector fields [J].
Bryant, Robert L. ;
Manno, Gianni ;
Matveev, Vladimir S. .
MATHEMATISCHE ANNALEN, 2008, 340 (02) :437-463
[7]  
CALDERBANK DMJ, MATHDG0606754
[8]  
Cartan E., 1924, Bulletin de la Socit Mathmatique de France, V52, P205, DOI [10.24033/bsmf.1053, DOI 10.24033/BSMF.1053]
[9]  
DUNAJSKI M, 2009, MATH P CAMB IN PRESS
[10]  
Dunajski M, 2007, COMMUN MATH PHYS, V272, P85, DOI [10.1007/s00220-007-0208-4, 10.1007/S00220-007-0208-4]