Embedded techniques for choosing the parameter in Tikhonov regularization

被引:13
|
作者
Gazzola, S. [1 ]
Novati, P. [1 ]
Russo, M. R. [1 ]
机构
[1] Univ Padua, Dept Math, Padua, Italy
关键词
linear discrete ill-posed problems; Tikhonov regularization; Arnoldi algorithm; Discrepancy principle; NORM;
D O I
10.1002/nla.1934
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces a new strategy for setting the regularization parameter when solving large-scale discrete ill-posed linear problems by means of the Arnoldi-Tikhonov method. This new rule is essentially based on the discrepancy principle, although no initial knowledge of the norm of the error that affects the right-hand side is assumed; an increasingly more accurate approximation of this quantity is recovered during the Arnoldi algorithm. Some theoretical estimates are derived in order to motivate our approach. Many numerical experiments performed on classical test problems as well as image deblurring problems are presented. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:796 / 812
页数:17
相关论文
共 50 条
  • [1] A REGULARIZATION PARAMETER FOR NONSMOOTH TIKHONOV REGULARIZATION
    Ito, Kazufumi
    Jin, Bangti
    Takeuchi, Tomoya
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (03): : 1415 - 1438
  • [2] Q-Curve and Area Rules for Choosing Heuristic Parameter in Tikhonov Regularization
    Raus, Toomas
    Hamarik, Uno
    MATHEMATICS, 2020, 8 (07)
  • [3] A method for choosing the regularization parameter in generalized Tikhonov regularized linear inverse problems
    Oraintara, S
    Karl, WC
    Castanon, DA
    Nguyen, TQ
    2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2000, : 93 - 96
  • [4] Extrapolation Techniques of Tikhonov Regularization
    Xiao, Tingyan
    Zhao, Yuan
    Su, Guozhong
    OPTIMIZATION AND REGULARIZATION FOR COMPUTATIONAL INVERSE PROBLEMS AND APPLICATIONS, 2010, : 107 - 126
  • [5] Multi-parameter Tikhonov regularization and model function approach to the damped Morozov principle for choosing regularization parameters
    Wang, Zewen
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (07) : 1815 - 1832
  • [6] MULTI-PARAMETER TIKHONOV REGULARIZATION
    Ito, Kazufumi
    Jin, Bangti
    Takeuchi, Tomoya
    METHODS AND APPLICATIONS OF ANALYSIS, 2011, 18 (01) : 31 - 46
  • [7] A parameter choice method for Tikhonov regularization
    Wu, LM
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2003, 16 : 107 - 128
  • [8] Parameter selections for Tikhonov regularization image restoration
    Zhang, Bin
    Jin, Fei
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 1419 - 1423
  • [9] On pseudooptimal parameter choice in the Tikhonov regularization method
    Leonov, A.S.
    Vestnik Moskovskogo Universiteta. Ser. 15 Vychislitel'naya Matematika i Kibernetika, 1995, (01): : 40 - 44
  • [10] Multi-parameter Tikhonov regularization — An augmented approach
    Kazufumi Ito
    Bangti Jin
    Tomoya Takeuchi
    Chinese Annals of Mathematics, Series B, 2014, 35 : 383 - 398