New cosmological bounds on hot relics: axions and neutrinos

被引:38
作者
Giare, William [1 ,2 ]
Di Valentino, Eleonora [3 ]
Melchiorri, Alessandro [1 ,2 ]
Mena, Olga [4 ]
机构
[1] Univ Roma La Sapienza, Phys Dept, Ple Aldo Moro 2, I-00185 Rome, Italy
[2] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Ple Aldo Moro 2, I-00185 Rome, Italy
[3] Univ Durham, Inst Particle Phys Phenomenol, Dept Phys, Durham DH1 3LE, England
[4] Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain
基金
欧盟地平线“2020”;
关键词
cosmic background radiation; cosmological parameters; dark matter; early Universe; cosmology: observations; STRONG CP PROBLEM; ISOTHERMAL DENSITY PERTURBATIONS; COSMIC AXIONS; DOMAIN-WALLS; SEARCH; CONSERVATION; OSCILLATIONS; CONSTRAINTS; INVARIANCE;
D O I
10.1093/mnras/stab1442
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Axions, if realized in nature, can be copiously produced in the early universe via thermal processes, contributing to the mass-energy density of thermal hot relics. In light of the most recent cosmological observations, we analyse two different thermal processes within a realistic mixed hot dark matter scenario which includes also massive neutrinos. Considering the axion-gluon thermalization channel, we derive our most constraining bounds on the hot relic masses m(a) < 7.46 eV and Sigma m(nu) < 0.114 eV both at 95 percent CL; while studying the axion-pion scattering, without assuming any specific model for the axion-pion interactions, and remaining in the range of validity of the chiral perturbation theory, our most constraining bounds are improved to m(a) < 0.91 eV and Sigma m(nu) < 0.105 eV, both at 95 percent CL. Interestingly, in both cases, the total neutrino mass lies very close to the inverted neutrino mass ordering prediction. If future terrestrial double beta decay and/or long-baseline neutrino experiments find that the nature mass ordering is the inverted one, this could rule out a wide region in the currently allowed thermal axion window. Our results therefore, strongly support multi messenger searches of axions and neutrino properties, together with joint analyses of their expected sensitivities.
引用
收藏
页码:2703 / 2711
页数:9
相关论文
共 50 条
  • [31] Unitarity bounds of astrophysical neutrinos
    Ahlers, Markus
    Bustamante, Mauricio
    Mu, Siqiao
    PHYSICAL REVIEW D, 2018, 98 (12)
  • [32] Cosmological and Astrophysical Implications of Sterile Neutrinos
    Petraki, Kalliopi
    PROCEEDINGS OF THE 2009 SNOWBIRD PARTICLE ASTROPHYSICS AND COSMOLOGY WORKSHOP (SNOWPAC 2009), 2010, 426 : 149 - 157
  • [33] IceCube bounds on sterile neutrinos above 10 eV
    Blennow, Mattias
    Fernandez-Martinez, Enrique
    Gehrlein, Julia
    Hernandez-Garcia, Osu
    Salvado, Jordi
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (10):
  • [34] Weighing neutrinos in Finslerian cosmological models
    Wang, Deng
    Meng, Xin-He
    PHYSICAL REVIEW D, 2017, 96 (02)
  • [35] Supernova bounds on keV-mass sterile neutrinos
    Zhou, Shun
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (13):
  • [36] Sterile neutrinos in light of recent cosmological and oscillation data: a multi-flavor scheme approach
    Melchiorri, Alessandro
    Mena, Olga
    Palomares-Ruiz, Sergio
    Pascoli, Silvia
    Slosar, Anze
    Sorel, Michel
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2009, (01):
  • [37] Axion hot dark matter bounds after Planck
    Archidiacono, Maria
    Hannestad, Steen
    Mirizzi, Alessandro
    Raffelt, Georg
    Wong, Yvonne Y. Y.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2013, (10):
  • [38] Implications of a primordial magnetic field for magnetic monopoles, axions, and Dirac neutrinos
    Long, Andrew J.
    Vachaspati, Tanmay
    PHYSICAL REVIEW D, 2015, 91 (10):
  • [39] New experimental bounds on the contributions to the cosmological density parameter Ω from strongly interacting massive particles
    Javorsek, D
    Fischbach, E
    Teplitz, V
    ASTROPHYSICAL JOURNAL, 2002, 568 (01) : 1 - 8
  • [40] Extreme axions unveiled: A novel fluid approach for cosmological modeling
    Winch, Harrison
    Hlozek, Renee
    Marsh, David J. E.
    Grin, Daniel
    Rogers, Keir K.
    PHYSICAL REVIEW D, 2024, 110 (04)