Hopf bifurcation in the Lu system

被引:39
作者
Yu, YG [1 ]
Zhang, SC [1 ]
机构
[1] Chinese Acad Sci, Acxad Math & Syst Sci, Inst Appl Math, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/S0960-0779(02)00573-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use a novel method to investigate the stability of Lu system. It is shown that the Lu system will display a Hopf bifurcation under certain conditions. Finally, we obtain the conditions of supercritical and subcritical bifurcation. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:901 / 906
页数:6
相关论文
共 13 条
[1]  
[Anonymous], 2002, CHAOTIC TIME SERIES
[2]  
Chen G., 1998, CHAOS ORDER METHODOL
[3]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[4]   Synchronization of an uncertain unified chaotic system via adaptive control [J].
Chen, SH ;
Lü, JH .
CHAOS SOLITONS & FRACTALS, 2002, 14 (04) :643-647
[5]  
Hassard B., 1981, Theory and Applications of Hopf Bifurcation
[6]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[7]  
2
[8]  
LU J, 2002, CHAOS SOLITON FRACT, V14, P1
[9]   Dynamical analysis of a new chaotic attractor [J].
Lu, JH ;
Chen, GR ;
Zhang, SC .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (05) :1001-1015
[10]   A new chaotic attractor coined [J].
Lü, JH ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (03) :659-661