Exact solutions of the N-dimensional radial Schrodinger equation with the Coulomb potential via the laplace tranform

被引:0
作者
Chen, G [1 ]
机构
[1] Shaoxing Coll Arts & Sci, Dept Phys, Shaoxing 312000, Peoples R China
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2004年 / 59卷 / 11期
关键词
bound state; Coulomb potential; Laplace transforms;
D O I
暂无
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The second-order N-dimensional Schrodinger differential equation with the Coulomb potential is reduced to a first-order differential equation by means of the Laplace transform and the exact bound state solutions are obtained. It is shown that this method solving the Schrodinger equation may serve as a substitute for the factorization approach also in lower dimensions.
引用
收藏
页码:875 / 876
页数:2
相关论文
共 12 条
[1]   QUANTIZATION OF ANGULAR-MOMENTUM IN THE N-DIMENSIONAL SPACE [J].
ALJABER, SM .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1995, 110 (08) :993-995
[2]   SCALAR CASIMIR EFFECT FOR A D-DIMENSIONAL SPHERE [J].
BENDER, CM ;
MILTON, KA .
PHYSICAL REVIEW D, 1994, 50 (10) :6547-6555
[3]   DIMENSIONAL EXPANSION FOR THE ISING LIMIT OF QUANTUM-FIELD THEORY [J].
BENDER, CM ;
BOETTCHER, S .
PHYSICAL REVIEW D, 1993, 48 (10) :4919-4923
[4]   The exact solutions of the Schrodinger equation with the Morse potential via Laplace transforms [J].
Chen, G .
PHYSICS LETTERS A, 2004, 326 (1-2) :55-57
[5]  
DOETSCH G, 1961, GUIDE APPL LAPLACE T
[6]   Hierarchical structure of the atomic orbital wave functions of D-dimensional atom [J].
Hosoya, H .
JOURNAL OF PHYSICAL CHEMISTRY A, 1997, 101 (04) :418-421
[7]   THE FACTORIZATION METHOD [J].
INFELD, L ;
HULL, TE .
REVIEWS OF MODERN PHYSICS, 1951, 23 (01) :21-68
[8]   The path integration of a relativistic particle on a D-dimensional sphere [J].
Lin, DH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (09) :3201-3217
[9]   HYDROGEN-ATOM AND RELATIVISTIC PI-MESIC ATOM IN N-SPACE DIMENSIONS [J].
NIETO, MM .
AMERICAN JOURNAL OF PHYSICS, 1979, 47 (12) :1067-1072
[10]   MULTIDIMENSIONAL EXTENSION OF A WENTZEL-KRAMERS-BRILLOUIN IMPROVEMENT FOR SPHERICAL QUANTUM BILLIARD ZETA-FUNCTIONS [J].
ROMEO, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (08) :4005-4011