Small traffic sign detection from large image

被引:83
作者
Liu, Zhigang [1 ]
Li, Dongyu [2 ]
Ge, Shuzhi Sam [3 ,4 ]
Tian, Feng [1 ]
机构
[1] Northeast Petr Univ, Sch Comp & Informat Technol, Daqing, Peoples R China
[2] Harbin Inst Technol, Dept Control Sci & Engn, Harbin, Peoples R China
[3] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore, Singapore
[4] Qingdao Univ, IFF, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
Small traffic sign; Loss function; Deconvolution; Hard negative samples; Tsinghua-Tencent; 100K; RECOGNITION;
D O I
10.1007/s10489-019-01511-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic traffic sign detection has great potential for intelligent vehicles. The ability to detect small traffic signs in large traffic scenes enhances the safety of intelligent devices. However, small object detection is a challenging problem in computer vision; the main problem involved in accurate traffic sign detection is the small size of the signs. In this paper, we present a deconvolution region-based convolutional neural network (DR-CNN) to cope with this problem. This method first adds a deconvolution layer and a normalization layer to the output of the convolution layer. It concatenates the features of the different layers into a fused feature map to provide sufficient information for small traffic sign detection. To improve training effectiveness and distinguish hard negative samples from easy positive ones, we propose a two-stage adaptive classification loss function for region proposal networks (RPN) and fully connected neural networks within DR-CNN. Finally, we evaluate our proposed method on the new and challenging Tsinghua-Tencent 100K dataset. We further conduct ablation experiments and analyse the effectiveness of the fused feature map and the two-stage classification loss function. The final experimental results demonstrate the superiority of the proposed method for detecting small traffic signs.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 38 条
[1]  
[Anonymous], 2016, ARXIV161204402
[2]   Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks [J].
Bell, Sean ;
Zitnick, C. Lawrence ;
Bala, Kavita ;
Girshick, Ross .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2874-2883
[3]   3D Object Proposals Using Stereo Imagery for Accurate Object Class Detection [J].
Chen, Xiaozhi ;
Kundu, Kaustav ;
Zhu, Yukun ;
Ma, Huimin ;
Fidler, Sanja ;
Urtasun, Raquel .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (05) :1259-1272
[4]  
Ciresan D, 2012, PROC CVPR IEEE, P3642, DOI 10.1109/CVPR.2012.6248110
[5]  
Dai J, 2016, PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), P1796, DOI 10.1109/ICIT.2016.7475036
[6]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338
[7]   Fast R-CNN [J].
Girshick, Ross .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1440-1448
[8]   Region-Based Convolutional Networks for Accurate Object Detection and Segmentation [J].
Girshick, Ross ;
Donahue, Jeff ;
Darrell, Trevor ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (01) :142-158
[9]   Real-Time Detection and Recognition of Road Traffic Signs [J].
Greenhalgh, Jack ;
Mirmehdi, Majid .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2012, 13 (04) :1498-1506
[10]  
He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]