Quasi-Monte Carlo methods can be efficient for integration over products of spheres

被引:17
作者
Kuo, FY [1 ]
Sloan, IH [1 ]
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Quasi-Monte Carlo methods; multivariate integration; products of spheres; worst-case error; tractability;
D O I
10.1016/j.jco.2004.07.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the worst-case error of quasi-Monte Carlo (QMC) rules for multivariate integration in some weighted Sobolev spaces of functions defined on the product of d copies of the unit sphere S-s subset of Rs+1. The space is a tensor product of d reproducing kernel Hilbert spaces defined in terms of uniformly bounded 'weight' parameters gamma(d.j) for j = 1,2, ..., d. We prove that strong QMC tractability holds (i.e. the number of function evaluations needed to reduce the initial error by a factor of epsilon is bounded independently of d) if and only if lim sup(d ->infinity)Sigma(d)(j=1) gamma d.j < infinity; and tractability holds (i.e. the number of function evaluations crows at most polynomially in d) if and only if lim Sup(d ->infinity)Sigma(d)(j=1) gamma(d.j)/log(d + 1) < infinity. The arguments are not constructive. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:196 / 210
页数:15
相关论文
共 25 条
[1]  
[Anonymous], 1998, CONSTR APPROX
[2]   THEORY OF REPRODUCING KERNELS [J].
ARONSZAJN, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) :337-404
[3]   Liberating the weights [J].
Dick, J ;
Sloan, IH ;
Wang, XQ ;
Wozniakowski, H .
JOURNAL OF COMPLEXITY, 2004, 20 (05) :593-623
[4]   On the convergence rate of the component-by-component construction of good lattice rules [J].
Dick, J .
JOURNAL OF COMPLEXITY, 2004, 20 (04) :493-522
[5]  
HESSE K, UNPUB WORST CASE ERR
[6]   Tractability of Multivariate integration for periodic functions [J].
Hickernell, FJ ;
Wozniakowski, H .
JOURNAL OF COMPLEXITY, 2001, 17 (04) :660-682
[7]   Integration and approximation in arbitrary dimensions [J].
Hickernell, FJ ;
Wozniakowski, H .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2000, 12 (01) :25-58
[8]  
HLAWKA E, 1982, J REINE ANGEW MATH, V330, P1
[9]   Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces [J].
Kuo, FY .
JOURNAL OF COMPLEXITY, 2003, 19 (03) :301-320
[10]   Component-by-component construction of good lattice rules with a composite number of points [J].
Kuo, FY ;
Joe, S .
JOURNAL OF COMPLEXITY, 2002, 18 (04) :943-976