Austenite reversion kinetics and stability during tempering of an additively manufactured maraging 300 steel

被引:120
作者
Conde, F. F. [1 ]
Escobar, J. D. [2 ]
Oliveira, J. P. [3 ]
Jardini, A. L. [4 ]
Bose Filho, W. W. [1 ]
Avila, J. A. [5 ]
机构
[1] Univ Sao Paulo, Dept Mat Engn, Av Joao Dagnone,1100 Jd Sta Angelina, BR-13563120 Sao Carlos, SP, Brazil
[2] Univ Sao Paulo, Met & Mat Engn Dept, 10 Av Prof Mello Moraes 2463, BR-05508030 Sao Paulo, SP, Brazil
[3] NOVA Univ Lisbon, NOVA Sch Sci & Technol, Dept Mech & Ind Engn, UNIDEMI, P-2829516 Caparica, Portugal
[4] Univ Estadual Campinas, Fac Chem Engn, Natl Inst Biofabricat BIOFABRIS, Av Albert Einstein 500, BR-13083852 Campinas, SP, Brazil
[5] Sao Paulo State Univ, UNESP, Campus Sao Joao da Boa Vista 505,Av Profa Isette, BR-13876750 Sao Joao Da Boa Vista, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Maraging; 300; Martensite-To-Austenite reversion; Additive manufacturing; TRANSFORMATION-INDUCED PLASTICITY; PHASE-TRANSFORMATION; MARTENSITE; MICROSTRUCTURE; BOUNDARIES; NITI;
D O I
10.1016/j.addma.2019.100804
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Reverted austenite is a metastable phase that can be used in maraging steels to increase ductility via transformation-induced plasticity or TRIP effect. In the present study, 18Ni maraging steel samples were built by selective laser melting, homogenized at 820 degrees C and then subjected to different isothermal tempering cycles aiming for martensite-to-austenite reversion. Thermodynamic simulations were used to estimate the inter-critical austenite + ferrite field and to interpret the results obtained after tempering. In-situ synchrotron X-ray diffraction was performed during the heating, soaking and cooling of the samples to characterize the martensite-to-austenite reversion kinetics and the reverted austenite stability upon cooling to room temperature. The reverted austenite size and distribution were measured by Electron Backscattered Diffraction. Results showed that the selected soaking temperatures of 610 degrees C and 650 degrees C promoted significant and gradual martensite-to-austenite reversion with high thermal stability. Tempering at 690 degrees C caused massive and complete austenitization, resulting in low austenite stability upon cooling due to compositional homogenization.
引用
收藏
页数:8
相关论文
共 49 条
[1]  
[Anonymous], 2009, Physical Metallurgy Principles
[2]  
[Anonymous], 2017, NAT PUBL GR, V16, P787
[3]  
[Anonymous], 2011, American Standard for Testing and Materials, P1, DOI DOI 10.1520/E0003-11.2
[4]  
[Anonymous], 2011, MAT DATA SHEET 18NI3, V49, P6
[5]   INCREASED FRACTURE TOUGHNESS IN A 300 GRADE MARAGING-STEEL AS A RESULT OF THERMAL CYCLING [J].
ANTOLOVICH, SD ;
SAXENA, A ;
CHANANI, GR .
METALLURGICAL TRANSACTIONS, 1974, 5 (03) :623-632
[6]  
ASM, 1991, ASM HDB HEAT TREATM, V4, P3470, DOI [10.1016/S0026-0576(03)90166-8, DOI 10.1016/S0026-0576(03)90166-8]
[7]  
ASTMInternational, 2022, C1202 ASTM, P1, DOI [10.1520/D8396-22, DOI 10.1520/C0150, 10.1520/C0039, DOI 10.1520/C0039]
[8]   Vessel microstructure design: A new approach for site-specific core-shell micromechanical tailoring of TRIP-assisted ultra-high strength steels [J].
Belde, M. ;
Springer, H. ;
Raabe, D. .
ACTA MATERIALIA, 2016, 113 :19-31
[9]   Multiphase microstructures via confined precipitation and dissolution of vessel phases: Example of austenite in martensitic steel [J].
Belde, M. ;
Springer, H. ;
Inden, G. ;
Raabe, D. .
ACTA MATERIALIA, 2015, 86 :1-14
[10]   Austenite Formation from Martensite in a 13Cr6Ni2Mo Supermartensitic Stainless Steel [J].
Bojack, A. ;
Zhao, L. ;
Morris, P. F. ;
Sietsma, J. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2016, 47A (05) :1996-2009