Deep Learning for Precipitation Estimation from Satellite and Rain Gauges Measurements

被引:28
作者
Moraux, Arthur [1 ,2 ]
Dewitte, Steven [1 ]
Cornelis, Bruno [2 ]
Munteanu, Adrian [2 ]
机构
[1] Royal Meteorol Inst Belgium, Ave Circulaire 3, B-1180 Brussels, Belgium
[2] Vrije Univ Brussel, ETRO Dept, Pl Laan 2, B-1050 Brussels, Belgium
关键词
rain detection; rain rate estimation; QPE; MSG SEVIRI; rain gauge; deep learning; convolutional neural network; semantic segmentation; RADAR; VERIFICATION;
D O I
10.3390/rs11212463
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper proposes a multimodal and multi-task deep-learning model for instantaneous precipitation rate estimation. Using both thermal infrared satellite radiometer and automatic rain gauge measurements as input, our encoder-decoder convolutional neural network performs a multiscale analysis of these two modalities to estimate simultaneously the rainfall probability and the precipitation rate value. Precipitating pixels are detected with a Probability Of Detection (POD) of 0.75 and a False Alarm Ratio (FAR) of 0.3. Instantaneous precipitation rate is estimated with a Root Mean Squared Error (RMSE) of 1.6 mm/h.
引用
收藏
页数:22
相关论文
共 27 条
  • [1] Alfeld P., 1984, Computer-Aided Geometric Design, V1, P169, DOI 10.1016/0167-8396(84)90029-3
  • [2] [Anonymous], 1997, Applied Geostatistics, DOI DOI 10.2113/GSEEGEOSCI.IV.2.278
  • [3] [Anonymous], 2015, ARXIV PREPRINT ARXIV
  • [4] [Anonymous], 2015, NIPS 15 P 28 INT C N
  • [5] [Anonymous], 2015, Nature, DOI [10.1038/nature14539, DOI 10.1038/NATURE14539]
  • [6] Satellite-Based Rainfall Retrieval: From Generalized Linear Models to Artificial Neural Networks
    Beusch, Lea
    Foresti, Loris
    Gabella, Marco
    Hamann, Ulrich
    [J]. REMOTE SENSING, 2018, 10 (06)
  • [7] Geometric Deep Learning Going beyond Euclidean data
    Bronstein, Michael M.
    Bruna, Joan
    LeCun, Yann
    Szlam, Arthur
    Vandergheynst, Pierre
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (04) : 18 - 42
  • [8] A study of warm rain detection using A-Train satellite data
    Chen, Ruiyue
    Li, Zhanqing
    Kuligowski, Robert J.
    Ferraro, Ralph
    Weng, Fuzhong
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2011, 38
  • [9] Development and verification of a real-time stochastic precipitation nowcasting system for urban hydrology in Belgium
    Foresti, L.
    Reyniers, M.
    Seed, A.
    Delobbe, L.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2016, 20 (01) : 505 - 527
  • [10] Evaluation of radar-gauge merging methods for quantitative precipitation estimates
    Goudenhoofdt, E.
    Delobbe, L.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2009, 13 (02) : 195 - 203