Energy spectra and expectation values of selected diatomic molecules through the solutions of Klein-Gordon equation with Eckart-Hellmann potential model

被引:39
作者
Inyang, E. P. [1 ,2 ]
William, E. S. [2 ]
Obu, J. A. [2 ]
Ita, B. I. [3 ]
Inyang, E. P. [1 ,2 ]
Akpan, I. O. [2 ]
机构
[1] Natl Open Univ Nigeria, Dept Pure & Appl Sci, Abuja, Nigeria
[2] Univ Calabar, Dept Phys, Theoret Phys Grp, PMB 1115, Calabar, Nigeria
[3] Univ Calabar, Dept Pure & Appl Chem, Phys Theoret Chem Grp, Calabar, Nigeria
关键词
Klein-Gordon equation; Eckart-Hellmann potential; diatomic molecules; Nikiforov-Uvarov method; expectation values; L-WAVE SOLUTIONS; SCHRODINGER-EQUATION; ANALYTICAL APPROXIMATIONS; PREDICTION; ENTROPY;
D O I
10.1080/00268976.2021.1956615
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We solved the Klein-Gordon equation using the Nikiforov-Uvarov (NU) method with Eckart-Hell mann potential (EHP) model with approximation to the centrifugal term. The analytical expression of the ro-vibrational energy spectra in relativistic, non-relativistic and the corresponding normalised wavefunction were obtained. The numerical bound states energy for various screening parameters at different quantum states and ro-vibrational energies of EHP for VH, TiH, NiC, TiC and CuLi diatomic-molecules were computed. We have also obtained the expectation values of < r(-2)>, < T > and < P-2 > using Hellmann-Feynman theorem for the selected diatomic molecules. Graphically, we have illustrated the variation of ro-vibrational energies and expectation values of < r(-2)>, < T > and < P-2 >. Four special cases of EHP where obtained and the results were in excellent agreements with the existing literature. [GRAPHICS]
引用
收藏
页数:14
相关论文
共 78 条
[1]  
Akpan IO, 2021, REV MEX FIS, V67, P482, DOI [10.31349/RevMexFis.67.482, 10.31349/revmexfis.67.482]
[2]   Solutions of the Klein-Gordon equation with the improved Rosen-Morse potential energy model [J].
Chen, Tao ;
Lin, Shu-Rong ;
Jia, Chun-Sheng .
EUROPEAN PHYSICAL JOURNAL PLUS, 2013, 128 (07) :1-6
[3]   Analytical approximations to the l-wave solutions of the Schrodinger equation with the Eckart potential [J].
Dong, Shi-Hai ;
Qiang, Wen-Chao ;
Sun, Guo-Hua ;
Bezerra, V. B. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (34) :10535-10540
[4]   Exact solutions of the Klein-Gordon equation with scalar and vector ring-shaped potentials [J].
Dong, Shi-Hai ;
Lozada-Cassou, M. .
PHYSICA SCRIPTA, 2006, 74 (02) :285-287
[5]   Relativistic Treatment of Spinless Particles Subject to a Rotating Deng-Fan Oscillator [J].
Dong Shi-Hai .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 55 (06) :969-971
[6]   ALGEBRAIC APPROACH TO THE KLEIN-GORDON EQUATION WITH HYPERBOLIC SCARF POTENTIAL [J].
Dong, Shishan ;
Dong, Shi-Hai ;
Bahlouli, H. ;
Bezerra, V. B. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2011, 20 (01) :55-61
[7]   The penetration of a potential barrier by electrons [J].
Eckart, C .
PHYSICAL REVIEW, 1930, 35 (11) :1303-1309
[8]  
Edet CO, 2020, REV MEX FIS, V66, P824, DOI [10.31349/RevMexFis.66.824, 10.31349/revmexfis.66.824]
[9]  
Edet C.O., 2019, INDIAN J PHYS NAT SC, V1
[10]  
Edet C.O., 2019, INDIAN J PHYS NAT SC, V19, P1477