The hereditary spastic paraplegia protein spastin interacts with the ESCRT-III complex-associated endosomal protein CHMP1B

被引:149
作者
Reid, E
Connell, J
Duley, S
Brown, SE
Sanderson, CM
机构
[1] Univ Cambridge, Cambridge Inst Med Res, Cambridge CB2 2XY, England
[2] Univ Cambridge, Dept Med Genet, Cambridge CB2 2XY, England
[3] MRC, Rosalind Franklin Ctr Genom Res, Cambridge CB10 1SB, England
基金
英国惠康基金;
关键词
D O I
10.1093/hmg/ddi003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pure hereditary spastic paraplegia is characterized by length-dependent degeneration of the distal ends of long axons. Mutations in spastin are the most common cause of the condition. We set out to investigate the function of spastin using a yeast two-hybrid approach to identify interacting proteins. Using full-length spastin as bait, we identified CHMP1B, a protein associated with the ESCRT (endosomal sorting complex required for transport)-III complex, as a binding partner. Several different approaches confirmed the physiological relevance of the interaction in mammalian cells. Epitope-tagged CHMP1B and spastin showed clear cytoplasmic co-localization in Cos-7 and PC12 cells. CHMP1B and spastin interacted specifically in vitro and in vivo in beta-lactamase protein fragment complementation assays, and spastin co-immunoprecipitated with CHMP1B. The interaction was mediated by a region of spastin lying between residues 80 and 196 and containing a microtubule interacting and trafficking domain. Expression of epitope-tagged CHMP1B in mammalian cells prevented the development of the abnormal microtubule phenotype associated with expression of ATPase-defective spastin. These data point to a role for spastin in intracellular membrane traffic events and provide further evidence to support the emerging recognition that defects in intracellular membrane traffic are a significant cause of motor neuron pathology.
引用
收藏
页码:19 / 38
页数:20
相关论文
共 57 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function [J].
Babst, M ;
Wendland, B ;
Estepa, EJ ;
Emr, SD .
EMBO JOURNAL, 1998, 17 (11) :2982-2993
[3]   Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body [J].
Babst, M ;
Katzmann, DJ ;
Snyder, WB ;
Wendland, B ;
Emr, SD .
DEVELOPMENTAL CELL, 2002, 3 (02) :283-289
[4]   ESCRT-III: An endosome-associated heterooligomeric protein complex required for MVB sorting [J].
Babst, M ;
Katzmann, DJ ;
Estepa-Sabal, EJ ;
Meerloo, T ;
Emr, SD .
DEVELOPMENTAL CELL, 2002, 3 (02) :271-282
[5]  
BARR ML, 1983, HUMAN NERVOUS SYSTEM
[6]   Identification of nuclear localisation sequences in spastin (SPG4) using a novel Tetra-GFP reporter system [J].
Beetz, C ;
Brodhun, M ;
Mountzouris, K ;
Kiehntopf, M ;
Berndt, A ;
Lehnert, D ;
Deufel, T ;
Bastmeyer, M ;
Schickel, J .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 318 (04) :1079-1084
[7]   The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy [J].
Bomont, P ;
Cavalier, L ;
Blondeau, F ;
Hamida, CB ;
Belal, S ;
Tazir, M ;
Demir, E ;
Topaloglu, H ;
Korinthenberg, R ;
Tüysüz, B ;
Landrieu, P ;
Hentati, F ;
Koenig, M .
NATURE GENETICS, 2000, 26 (03) :370-374
[8]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[9]   Mutations of SPG4 are responsible for a loss of function of spastin, an abundant neuronal protein localized in the nucleus [J].
Charvin, D ;
Cifuentes-Diaz, C ;
Fonknechten, N ;
Joshi, V ;
Hazan, J ;
Melki, J ;
Betuing, S .
HUMAN MOLECULAR GENETICS, 2003, 12 (01) :71-78
[10]   The identification of a conserved domain in both spartin and spastin, mutated in hereditary spastic paraplegia [J].
Ciccarelli, FD ;
Proukakis, C ;
Patel, H ;
Cross, H ;
Azam, S ;
Patton, MA ;
Bork, P ;
Crosby, AH .
GENOMICS, 2003, 81 (04) :437-441