First-principles study of strain effect on elastic and optical properties and lattice thermal conductivity of Janus ZrBrCl monolayer

被引:9
作者
Xiong, Min [1 ]
Chen, Zhi-Yong [1 ]
Hu, Cui-E [2 ]
Cheng, Yan [1 ]
Geng, Hua-Yun [3 ]
机构
[1] Sichuan Univ, Coll Phys, Chengdu 610064, Peoples R China
[2] Chongqing Normal Univ, Coll Phys & Elect Engn, Chongqing 400047, Peoples R China
[3] CAEP, Natl Key Lab Shock Wave & Detonat Phys Res, Inst Fluid Phys, Mianyang 621900, Sichuan, Peoples R China
来源
MATERIALS TODAY COMMUNICATIONS | 2021年 / 26卷
关键词
ZrBrCl monolayer; Biaxial tensile; Electronic structure; Optical properties; Lattice thermal conductivity; TRANSITION-METAL DICHALCOGENIDES; SINGLE-LAYER; MOLECULAR-DYNAMICS; TRANSPORT; MOSSE; POLARIZATION; EVOLUTION;
D O I
10.1016/j.mtcomm.2020.101995
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Janus monolayer materials have been extensively and systematically investigated since the successful synthesis of MoSSe monolayer which broke the out-of-plane mirror symmetry of TMDs monolayers. In order to explore the new Janus material, we turn our attentions to the family of halogens next to group-VIA (S, Se, Te) and carried out a systematic study of the ZrBrCl monolayer. By applying biaxial strain to ZrBrCl monolayer, the band gap of ZrBrCl monolayer changes from indirect to direct and then to indirect. In addition, the real and imaginary parts of the dielectric function and the absorption coefficient are calculated, which show the red shift under strain. It is found that the absorption range and strength in the visible region are almost the same as MoSSe monolayer, indicating that ZrBrCl monolayer may be a potential water-splitting photocatalyst. Moreover, we calculate that the lattice thermal conductivity of ZrBrCl monolayer at 300 K was 11.24 Wm(-1) K-1, and find that it is lower than that of MoSSe monolayer but slightly higher than that of ZrSSe monolayer. The reasons are analyzed through the phonon group velocity and phonon lifetime.
引用
收藏
页数:10
相关论文
共 65 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]   FINITE ELASTIC STRAIN OF CUBIC CRYSTALS [J].
BIRCH, F .
PHYSICAL REVIEW, 1947, 71 (11) :809-824
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[5]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[6]   Accurate solid-state band gaps via screened hybrid electronic structure calculations [J].
Brothers, Edward N. ;
Izmaylov, Artur F. ;
Normand, Jacques O. ;
Barone, Veronica ;
Scuseria, Gustavo E. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (01)
[7]  
Deng DH, 2016, NAT NANOTECHNOL, V11, P218, DOI [10.1038/nnano.2015.340, 10.1038/NNANO.2015.340]
[8]   Ultra-low lattice thermal conductivity and giant phonon-electric field coupling in hafnium dichalcogenide monolayers [J].
Dimple ;
Mohanta, Manish Kumar ;
Rawat, Ashima ;
Jena, Nityasagar ;
Ahammed, Raihan ;
De Sarkar, Abir .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (31)
[9]   Large In-Plane and Vertical Piezoelectricity in Janus Transition Metal Dichalchogenides [J].
Dong, Liang ;
Lou, Jun ;
Shenoy, Vivek B. .
ACS NANO, 2017, 11 (08) :8242-8248
[10]   Janus PtXnY2-n (X, Y= S, Se, Te; 0 ≤ n ≤ 2) Monolayers for Enhanced Photocatalytic Water Splitting [J].
Ersan, F. ;
Ataca, C. .
PHYSICAL REVIEW APPLIED, 2020, 13 (06)