A thermodynamically consistent phase field model for mixed-mode fracture in rock-like materials

被引:65
作者
Liu, Sijia [1 ]
Wang, Yunteng [2 ]
Peng, Chong [2 ]
Wu, Wei [2 ]
机构
[1] Qingdao Univ Technol, Sch Civil Engn, Qingdao 266033, Peoples R China
[2] Univ Bodenkultur Wien, Inst Geotech, Feistmantelstr 4, A-1180 Vienna, Austria
基金
欧盟地平线“2020”; 奥地利科学基金会;
关键词
Phase field model; Failure criteria; Mixed-mode fractures; Fully monolithic solution strategy; Rock-like materials; COHESIVE ZONE MODEL; BRITTLE-FRACTURE; CRACK-PROPAGATION; FINITE-ELEMENTS; DAMAGE; FORMULATION; FAILURE; DISCONTINUITIES; REFORMULATION; COALESCENCE;
D O I
10.1016/j.cma.2022.114642
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A thermodynamically consistent phase field model with new crack driving forces is proposed to simulate the mixed-mode fracture phenomena in rock-like materials. The governing equations are derived using the volumetric and deviatoric strain split. Based on the Benzeggagh-Kenane failure criterion, our model captures the salient features of different fracture modes, e.g., pure tensile dominated fracture, pure shear dominated fracture, and mixed tensile-shear fracture and mixed compressive-shear fracture phenomena. The fully monolithic algorithm enables our new phase field model to obtain stable numerical results with fast numerical convergence. The three-point bending test of concrete beam is considered for validation. The numerical results are collaborated by test results from the literature. Afterwards, the numerical model is applied to study crack propagation and coalescence in rock-like specimens under uniaxial compression. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:28
相关论文
共 80 条
[1]   Phase-field modeling of ductile fracture [J].
Ambati, M. ;
Gerasimov, T. ;
De Lorenzis, L. .
COMPUTATIONAL MECHANICS, 2015, 55 (05) :1017-1040
[2]   A review on phase-field models of brittle fracture and a new fast hybrid formulation [J].
Ambati, Marreddy ;
Gerasimov, Tymofiy ;
De Lorenzis, Laura .
COMPUTATIONAL MECHANICS, 2015, 55 (02) :383-405
[3]   Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments [J].
Amor, Hanen ;
Marigo, Jean-Jacques ;
Maurini, Corrado .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2009, 57 (08) :1209-1229
[4]  
Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO
[5]  
2-S
[6]   Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus [J].
Benzeggagh, ML ;
Kenane, M .
COMPOSITES SCIENCE AND TECHNOLOGY, 1996, 56 (04) :439-449
[7]   The use of a cohesive zone model to study the fracture of fibre composites and adhesively-bonded joints [J].
Blackman, BRK ;
Hadavinia, H ;
Kinloch, AJ ;
Williams, JG .
INTERNATIONAL JOURNAL OF FRACTURE, 2003, 119 (01) :25-46
[8]   Fracture coalescence in rock-type materials under uniaxial and biaxial compression [J].
Bobet, A ;
Einstein, HH .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 1998, 35 (07) :863-888
[9]   A phase-field description of dynamic brittle fracture [J].
Borden, Michael J. ;
Verhoosel, Clemens V. ;
Scott, Michael A. ;
Hughes, Thomas J. R. ;
Landis, Chad M. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 217 :77-95
[10]   Strain localization in frictional materials exhibiting displacement jumps [J].
Borja, RI ;
Regueiro, RA .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (20-21) :2555-2580