The Locating-Chromatic Number of Binary Trees

被引:7
|
作者
Syofyan, Dian Kastika [1 ]
Baskoro, Edy Tri [1 ]
Assiyatun, Hilda [1 ]
机构
[1] Inst Teknol Bandung, Fac Math & Nat Sci, Combinatorial Math Res Grp, Jalan Ganesa 10, Bandung 40132, Indonesia
来源
2ND INTERNATIONAL CONFERENCE OF GRAPH THEORY AND INFORMATION SECURITY | 2015年 / 74卷
关键词
Color code; locating-chromatic number; tree graph; binary tree;
D O I
10.1016/j.procs.2015.12.079
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let G = (V, E) be a connected graph. The locating-chromatic number of G, denoted by chi(L)(G), is the cardinality of a minimum locating coloring of the vertex set V(G) such that all vertices have distinct coordinates. The results on locating-chromatic number of graphs are still limited. In particular, the locating-chromatic number of trees is not completely solved. Therefore, in this paper, we study the locating-chromatic number of any binary tree. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:79 / 83
页数:5
相关论文
共 50 条
  • [31] Binary trees with the largest number of subtrees
    Szekely, L. A.
    Wang, Hua
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (03) : 374 - 385
  • [32] On the Locating Chromatic Number of Subdivision of Barbell Graphs Containing Generalized Petersen Graph
    Asmiati
    Yana, I. Ketut Sadha Gunce
    Yulianti, Lyra
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2019, 19 (07): : 45 - 50
  • [33] Separating tree-chromatic number from path-chromatic number
    Barrera-Cruz, Fidel
    Felsner, Stefan
    Meszaros, Tamas
    Micek, Piotr
    Smith, Heather
    Taylor, Libby
    Trotter, William T.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 138 : 206 - 218
  • [34] Upper Bounds of the Locating Chromatic Numbers of Shadow Cycle Graphs
    Asmiati
    Okzarima, Wenty
    Notiragayu
    La Zakaria
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (01) : 239 - 248
  • [35] Annihilation and coalescence on binary trees
    Benjamini, Itai
    Lima, Yuri
    STOCHASTICS AND DYNAMICS, 2014, 14 (03)
  • [36] Binary trees equipped with semivaluations
    Pajoohesh, H.
    Schellekens, M.
    QUAESTIONES MATHEMATICAE, 2007, 30 (02) : 123 - 131
  • [37] On embedding binary trees into hypercubes
    Tayu, S
    Ueno, S
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2000, 83 (01): : 1 - 13
  • [38] The Fermat star of binary trees
    Luccio, Fabrizio
    Pagli, Linda
    INFORMATION PROCESSING LETTERS, 2009, 109 (11) : 568 - 571
  • [39] Integer partitions and binary trees
    Schmidt, F
    ADVANCES IN APPLIED MATHEMATICS, 2002, 28 (3-4) : 592 - 601
  • [40] On Succinct Representations of Binary Trees
    Davoodi P.
    Raman R.
    Satti S.R.
    Mathematics in Computer Science, 2017, 11 (2) : 177 - 189