Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay

被引:73
作者
Aimene, D. [1 ]
Baleanu, D. [2 ,3 ]
Seba, D. [1 ]
机构
[1] Boumerdes Univ, Fac Engineers Sci, Dynam Engines & Vibroacoust Lab, Boumerdes, Algeria
[2] Cankaya Univ, Math Dept, Ankara, Turkey
[3] Inst Space Sci, Magurele, Romania
关键词
Fractional derivatives and integrals; Controllability; Differential equations with impulses; Semigroup and fixed-point theories;
D O I
10.1016/j.chaos.2019.07.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss the controllability of semilinear differential equations of fractional order with impulses and delay. We make use of the Atangana-Baleanu derivative. Our main tools are semigroup theory, the fixed point theorem due to Darbo and their combination with the properties of measures of noncompactness. Our abstract results are well supported by an illustrative example. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页码:51 / 57
页数:7
相关论文
共 32 条
[1]  
Al-Refai M., 2018, ELECTRON J DIFFER EQ, V2018, P1
[2]  
Al-Salti N, 2016, PROG FRACT DIFFER AP, V2, P257, DOI [DOI 10.18576/PFDA/020403, DOI 10.18576/PFDA/020403.]
[3]   Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order [J].
Atangana, Abdon ;
Koca, Ilknur .
CHAOS SOLITONS & FRACTALS, 2016, 89 :447-454
[4]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[5]   Optimality conditions for fractional differential inclusions with nonsingular Mittag-Leffler kernel [J].
Bahaa, G. M. ;
Hamiaz, Adnane .
ADVANCES IN DIFFERENCE EQUATIONS, 2018,
[6]  
Bajlekova EG., 2001, THESIS U PRESS FACIL
[7]  
Baleanu D, 2018, ADV DIFFER EQU-NY, DOI 10.1186/s13662-018-1696-6
[8]   On some new properties of fractional derivatives with Mittag-Leffler kernel [J].
Baleanu, Dumitru ;
Fernandez, Arran .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 :444-462
[9]  
Banas J., 1980, Comment. Math. Univ. Carol., V21, P131
[10]   Real world applications of fractional models by Atangana-Baleanu fractional derivative [J].
Bas, Erdal ;
Ozarslan, Ramazan .
CHAOS SOLITONS & FRACTALS, 2018, 116 :121-125