How CdS nanoparticles can influence TiO2 nanotube arrays in solar energy applications?

被引:60
作者
Qorbani, M. [1 ]
Naseri, N. [1 ]
Moradlou, O. [2 ]
Azimirad, R. [3 ]
Moshfegh, A. Z. [1 ,4 ]
机构
[1] Sharif Univ Technol, Dept Phys, Tehran, Iran
[2] Alzahra Univ, Fac Sci, Dept Chem, Tehran, Iran
[3] Malek Ashtar Univ Technol, Tehran, Iran
[4] Sharif Univ Technol, Inst Nanosci & Nanotechnol, Tehran, Iran
关键词
TNA; Cadmium sulfide; Redox reactions; Visible light; CHEMICAL BATH DEPOSITION; DOPED TIO2; QUANTUM DOTS; WATER; PHOTOCATALYSIS; ANODIZATION; PHOTOANODES; FABRICATION; ELECTRODE; CELLS;
D O I
10.1016/j.apcatb.2014.06.053
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, titanium dioxide (TiO2) nanotube array (TNA) films are fabricated via anodization of titanium (Ti) sheet. After annealing, the films consisted of well ordered, vertically oriented TNAs of 125 +/- 6 nm diameter, 38 +/- 3 nm wall thickness, and 2.9 +/- 0.3 mu m in length. Cadmium sulfide (CdS) nanoparticles are deposited on the synthesized TNAs by sequential-chemical bath deposition (S-CBD) method with different immersion cycle (n) to produce heterogeneous TNA/CdS-n (n=10, 20 and 30) nanostructures. UV visible absorption spectra of the samples revealed that the absorption edge of CdS modified TNAs was shifted to a higher wavelength with respect to the pure TNAs indicating band gap reduction of the TNA/CdS-n. Photocurrent response of the samples was changed with n, and the maximum photocurrent density (at steady state) of 28 +/- 1 mA/cm(2) (or 70 +/- 2 mA/W) was obtained for the TNA/CdS-20 photoanode which is about 30 times higher than one for the pure TNA under similar condition. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:210 / 216
页数:7
相关论文
共 53 条
  • [11] Fabrication and characterization of CdS-sensitized TiO2 nanotube photoelectrode
    Cheng, Hao
    Zhao, Xiujian
    Sui, Xiaotao
    Xiong, Yuli
    Zhao, Jiang
    [J]. JOURNAL OF NANOPARTICLE RESEARCH, 2011, 13 (02) : 555 - 562
  • [12] Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production
    Cho, In Sun
    Chen, Zhebo
    Forman, Arnold J.
    Kim, Dong Rip
    Rao, Pratap M.
    Jaramillo, Thomas F.
    Zheng, Xiaolin
    [J]. NANO LETTERS, 2011, 11 (11) : 4978 - 4984
  • [13] Cullity B. D., 1956, Elements of X-ray Diffraction
  • [14] Control of the visible and UV light water splitting and photocatalysis of nitrogen doped TiO2 thin films deposited by reactive magnetron sputtering
    Fakhouri, Houssam
    Pulpytel, Jerome
    Smith, Wilson
    Zolfaghari, Alireza
    Mortaheb, Hamid Reza
    Meshkini, Fateme
    Jafari, Reza
    Sutter, Eliane
    Arefi-Khonsari, Farzaneh
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 144 : 12 - 21
  • [15] ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE
    FUJISHIMA, A
    HONDA, K
    [J]. NATURE, 1972, 238 (5358) : 37 - +
  • [16] Gholami M., 2013, RSC ADV, P7838
  • [17] Titanium oxide nanotube arrays prepared by anodic oxidation
    Gong, D
    Grimes, CA
    Varghese, OK
    Hu, WC
    Singh, RS
    Chen, Z
    Dickey, EC
    [J]. JOURNAL OF MATERIALS RESEARCH, 2001, 16 (12) : 3331 - 3334
  • [18] Grimes CA, 2009, TIO2 NANOTUBE ARRAYS - SYNTHESIS, PROPERTIES, AND APPLICATIONS, pXIII
  • [19] Enhanced photoanode properties of CdS nanoparticle sensitized TiO2 nanotube arrays by solvothermal synthesis
    Kalanur, Shankara Sharanappa
    Lee, Sun Hong
    Hwang, Yun Jeong
    Joo, Oh-Shim
    [J]. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2013, 259 : 1 - 9
  • [20] Fabrication of PbS Nanoparticle-Sensitized TiO2 Nanotube Arrays and Their Photoelectrochemical Properties
    Kang, Qing
    Liu, Shaohuan
    Yang, Lixia
    Cai, Qingyun
    Grimes, Craig A.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (03) : 746 - 749