Platinum single-atom catalysts: a comparative review towards effective characterization

被引:137
|
作者
Liu, Qing [1 ]
Zhang, Zailei [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Chem & Environm Engn, Key Lab Low Carbon Energy & Chem Engn, Qingdao 266590, Shandong, Peoples R China
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, CAS Ctr Excellence Nanosci, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
WATER-GAS SHIFT; HYDROGEN EVOLUTION; CO OXIDATION; SUPPORTED SINGLE; CARBON NANOTUBES; X-RAY; SITES; CLUSTERS; SURFACE; OXYGEN;
D O I
10.1039/c9cy01028a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single-atom catalysis is a new frontier in the heterogeneous catalysis field due to its high activity and selectivity for various catalytic reactions. However, decades ago, single-atom catalysts could not be clearly visualized and characterized due to limitations associated with instrument resolution. In recent years, with the rapid development of characterization techniques, high-resolution scanning tunneling microscopy (STM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), X-ray photoelectron spectroscopy (XPS), and other characterization techniques have been used to accurately represent single-atom catalysts. In this review, we discuss in depth these characterization techniques for Pt single-atom catalysts and focus on Fourier transformed EXAFS spectroscopy to study the coordination environment of Pt-M (M = Cl, O, C, N, S, Pt, Cu, Pd, Ni, Fe) for atomically dispersed Pt catalysts on diverse supports. We believe that this review will lead to better understanding of the effective characterization of Pt single-atom catalysts and promote further research on Pt single-atom catalysis in the future.
引用
收藏
页码:4821 / 4834
页数:14
相关论文
共 50 条
  • [21] Supported metal catalysts at the single-atom limit - A viewpoint
    Flytzani-Stephanopoulos, Maria
    CHINESE JOURNAL OF CATALYSIS, 2017, 38 (09) : 1432 - 1442
  • [22] Single-Atom Catalysts for Electrocatalytic Applications
    Zhang, Qiaoqiao
    Guan, Jingqi
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (31)
  • [23] Stability of single-atom catalysts for electrocatalysis
    Hu, Hao
    Wang, Jiale
    Tao, Peng
    Song, Chengyi
    Shang, Wen
    Deng, Tao
    Wu, Jianbo
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (11) : 5835 - 5849
  • [24] Single-Atom Catalysts in Catalytic Biomedicine
    Xiang, Huijing
    Feng, Wei
    Chen, Yu
    ADVANCED MATERIALS, 2020, 32 (08)
  • [25] A perspective on oxide-supported single-atom catalysts
    Zhou, Junyi
    Xu, Zhen
    Xu, Meijia
    Zhou, Xiong
    Wu, Kai
    NANOSCALE ADVANCES, 2020, 2 (09): : 3624 - 3631
  • [26] Fabrication, characterization, and stability of supported single-atom catalysts
    Chen, Yaxin
    Huang, Zhiwei
    Ma, Zhen
    Chen, Jianmin
    Tang, Xingfu
    CATALYSIS SCIENCE & TECHNOLOGY, 2017, 7 (19) : 4250 - 4258
  • [27] Single-Atom Catalysts: A Review of Synthesis Strategies and Their Potential for Biofuel Production
    Asikin-Mijan, Nurul
    Mohd Sidek, Haslinda
    AlSultan, Abdulkareem G.
    Azman, Nurul Ahtirah
    Adzahar, Nur Athirah
    Ong, Hwai Chyuan
    CATALYSTS, 2021, 11 (12)
  • [28] Towards dense single-atom catalysts for future automotive applications
    Beniya, Atsushi
    Higashi, Shougo
    NATURE CATALYSIS, 2019, 2 (07) : 590 - 602
  • [29] Coordination Engineering of Single-Atom Catalysts for the Oxygen Reduction Reaction: A Review
    Zhang, Jincheng
    Yang, Hongbin
    Liu, Bin
    ADVANCED ENERGY MATERIALS, 2021, 11 (03)
  • [30] Tailoring Single-Atom Platinum for Selective and Stable Catalysts in Propane Dehydrogenation
    Nakaya, Yuki
    Furukawa, Shinya
    CHEMPLUSCHEM, 2022, 87 (04):