Platinum single-atom catalysts: a comparative review towards effective characterization

被引:137
|
作者
Liu, Qing [1 ]
Zhang, Zailei [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Chem & Environm Engn, Key Lab Low Carbon Energy & Chem Engn, Qingdao 266590, Shandong, Peoples R China
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, CAS Ctr Excellence Nanosci, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
WATER-GAS SHIFT; HYDROGEN EVOLUTION; CO OXIDATION; SUPPORTED SINGLE; CARBON NANOTUBES; X-RAY; SITES; CLUSTERS; SURFACE; OXYGEN;
D O I
10.1039/c9cy01028a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single-atom catalysis is a new frontier in the heterogeneous catalysis field due to its high activity and selectivity for various catalytic reactions. However, decades ago, single-atom catalysts could not be clearly visualized and characterized due to limitations associated with instrument resolution. In recent years, with the rapid development of characterization techniques, high-resolution scanning tunneling microscopy (STM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), X-ray photoelectron spectroscopy (XPS), and other characterization techniques have been used to accurately represent single-atom catalysts. In this review, we discuss in depth these characterization techniques for Pt single-atom catalysts and focus on Fourier transformed EXAFS spectroscopy to study the coordination environment of Pt-M (M = Cl, O, C, N, S, Pt, Cu, Pd, Ni, Fe) for atomically dispersed Pt catalysts on diverse supports. We believe that this review will lead to better understanding of the effective characterization of Pt single-atom catalysts and promote further research on Pt single-atom catalysis in the future.
引用
收藏
页码:4821 / 4834
页数:14
相关论文
共 50 条
  • [1] Preparation, characterization and catalytic performance of single-atom catalysts
    Wang, Liqiong
    Huang, Liang
    Liang, Feng
    Liu, Simin
    Wang, Yuhua
    Zhang, Haijun
    CHINESE JOURNAL OF CATALYSIS, 2017, 38 (09) : 1528 - 1539
  • [2] Thermally stable single-atom platinum-on-ceria catalysts via atom trapping
    Jones, John
    Xiong, Haifeng
    DeLaRiva, Andrew T.
    Peterson, Eric J.
    Hien Pham
    Challa, Sivakumar R.
    Qi, Gongshin
    Oh, Se
    Wiebenga, Michelle H.
    Hernandez, Xavier Isidro Pereira
    Wang, Yong
    Datye, Abhaya K.
    SCIENCE, 2016, 353 (6295) : 150 - 154
  • [3] Support Effects in Single-Atom Platinum Catalysts for Electrochemical Oxygen Reduction
    Yang, Sungeun
    Tak, Young Joo
    Kim, Jiwhan
    Soon, Aloysius
    Lee, Hyunjoo
    ACS CATALYSIS, 2017, 7 (02): : 1301 - 1307
  • [4] Local structural environment of single-atom catalysts
    Chen, Zheng
    Han, Lili
    INORGANIC CHEMISTRY FRONTIERS, 2023, 11 (01) : 29 - 49
  • [5] Heterogeneous Atomic Catalysts Overcoming the Limitations of Single-Atom Catalysts
    Jeong, Hojin
    Shin, Sangyong
    Lee, Hyunjoo
    ACS NANO, 2020, 14 (11) : 14355 - 14374
  • [6] Structural evolution of single-atom catalysts
    Zhang, Leilei
    Yang, Ji
    Yang, Xiaofeng
    Wang, Aiqin
    Zhang, Tao
    CHEM CATALYSIS, 2023, 3 (03):
  • [7] The Multifaceted Reactivity of Single-Atom Heterogeneous Catalysts
    Mitchell, Sharon
    Vorobyeva, Evgeniya
    Perez-Ramirez, Javier
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (47) : 15316 - 15329
  • [8] Single-atom catalysts and their applications in organic chemistry
    Yan, Huan
    Su, Chenliang
    He, Jun
    Chen, Wei
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (19) : 8793 - 8814
  • [9] Tuning the Coordination Environment of Single-Atom Iron Catalysts Towards Effective Nitrogen Reduction
    Guo, Zhongyuan
    Liu, Chuangwei
    Sun, Chenghua
    Xu, Jiang
    Li, Hao
    Wang, Tianyi
    CHEMCATCHEM, 2023, 15 (14)
  • [10] Towards ALD thin film stabilized single-atom Pd1 catalysts
    Piernavieja-Hermida, Mar
    Lu, Zheng
    White, Anderson
    Low, Ke-Bin
    Wu, Tianpin
    Elam, Jeffrey W.
    Wu, Zili
    Lei, Yu
    NANOSCALE, 2016, 8 (33) : 15348 - 15356