Analytic approach to nonlinear Rayleigh-Taylor and Richtmyer-Meshkov instabilities

被引:137
作者
Mikaelian, KO [1 ]
机构
[1] Univ Calif Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
D O I
10.1103/PhysRevLett.80.508
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present analytic formulas for the nonlinear evolution of the bubble amplitude in Rayleigh-Taylor and Richtmyer-Meshkov instabilities in two and three dimensions. Direct numerical simulations of He/Xe shock tube experiments are also presented and the results are found to agree well with the analytic formulas which are based on an extension of Layzer's theory [Astrophys. J. 122, 1 1955)].
引用
收藏
页码:508 / 511
页数:4
相关论文
共 14 条
[1]  
BIRKHOFF G, 1957, J MATH MECH, V6, P769
[2]   Lagrangian formalism for the Rayleigh-Taylor instability [J].
Hazak, G .
PHYSICAL REVIEW LETTERS, 1996, 76 (22) :4167-4170
[3]   POTENTIAL FLOW MODELS OF RAYLEIGH-TAYLOR AND RICHTMYER-MESHKOV BUBBLE FRONTS [J].
HECHT, J ;
ALON, U ;
SHVARTS, D .
PHYSICS OF FLUIDS, 1994, 6 (12) :4019-4030
[4]   DYNAMICS OF FLUID SURFACE IN MULTIDIMENSION [J].
INOGAMOV, NA ;
ABARZHI, SI .
PHYSICA D, 1995, 87 (1-4) :339-341
[5]   NONLINEAR FREE-SURFACE RAYLEIGH-TAYLOR INSTABILITY [J].
KULL, HJ .
PHYSICAL REVIEW A, 1986, 33 (03) :1957-1967
[6]   ON THE INSTABILITY OF SUPERPOSED FLUIDS IN A GRAVITATIONAL FIELD [J].
LAYZER, D .
ASTROPHYSICAL JOURNAL, 1955, 122 (01) :1-12
[7]   GROWTH-RATE OF THE RICHTMYER-MESHKOV INSTABILITY AT SHOCKED INTERFACES [J].
MIKAELIAN, KO .
PHYSICAL REVIEW LETTERS, 1993, 71 (18) :2903-2906
[8]  
MIKAELIAN KO, 1994, PHYS FLUIDS, V6, P536
[9]   TAYLOR INSTABILITY IN SHOCK ACCELERATION OF COMPRESSIBLE FLUIDS [J].
RICHTMYER, RD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1960, 13 (02) :297-319
[10]   AN OVERVIEW OF RAYLEIGH-TAYLOR INSTABILITY [J].
SHARP, DH .
PHYSICA D, 1984, 12 (1-3) :3-18