Pmt1 mannosyl transferase is involved in cell wall incorporation of several proteins in Saccharomyces cerevisiae

被引:27
作者
Bourdineaud, JP
van der Vaart, JM
Donzeau, M
de Sampaïo, G
Verrips, CT
Lauquin, GJM
机构
[1] CNRS, IBGC, Lab Physiol Mol & Cellulaire, F-33077 Bordeaux, France
[2] Univ Utrecht, Dept Mol Cell Biol, NL-3584 CH Utrecht, Netherlands
[3] Unilever Res Labs Vlaardingen, NL-3133 AT Vlaardingen, Netherlands
关键词
D O I
10.1046/j.1365-2958.1998.00660.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We constructed hybrid proteins containing a plant alpha-galactosidase fused to various C-terminal moieties of the hypoxic Srp1p; this allowed us to identify a cell wall-bound form of Srp1p. We showed that the last 30 amino acids of Srp1p, but not the last 16, contain sufficient information to signal glycosyl-phosphatidylinositol anchor attachment and subsequent cell wall anchorage. The cell wall-bound form was shown to be linked by means of a beta 1,6-glucose-containing sidechain. Pmt1p enzyme is known as a protein-O-mannosyltransferase that initiates the O-glycosidic chains on proteins. We found that a pmt1 deletion mutant was highly sensitive to zymolyase and that in this strain the alpha-galactosidase-Srp1 fusion proteins, an alpha-galactosidase-Sed1 hybrid protein and an alpha-galactosidase-alpha-agglutinin hybrid protein were absent from both the membrane and the cell wall fractions. However, the plasma membrane protein Gas1p still receives its glycosyl-phosphatidylinositol anchor in pmt1 cells, and in this mutant strain an alpha-galactosidase-Cwp2 fusion protein was found linked to the cell wall but devoid of beta 1,6-glucan side-chain, indicating an alternative mechanism of cell wall anchorage.
引用
收藏
页码:85 / 98
页数:14
相关论文
共 44 条
[1]   THE YEAST PROPROTEIN CONVERTASE ENCODED BY YAP3 IS A GLYCOPHOSPHATIDYLINOSITOL-ANCHORED PROTEIN THAT LOCALIZES TO THE PLASMA-MEMBRANE [J].
ASH, J ;
DOMINGUEZ, M ;
BERGERON, JJM ;
THOMAS, DY ;
BOURBONNAIS, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (35) :20847-20854
[2]   IDENTIFICATION OF 6 COMPLEMENTATION CLASSES INVOLVED IN THE BIOSYNTHESIS OF GLYCOSYLPHOSPHATIDYLINOSITOL ANCHORS IN SACCHAROMYCES-CEREVISIAE [J].
BENGHEZAL, M ;
LIPKE, PN ;
CONZELMANN, A .
JOURNAL OF CELL BIOLOGY, 1995, 130 (06) :1333-1344
[3]   Yeast gpi8p is essential for GPI anchor attachment onto proteins [J].
Benghezal, M ;
Benachour, A ;
Rusconi, S ;
Aebi, M ;
Conzelmann, A .
EMBO JOURNAL, 1996, 15 (23) :6575-6583
[4]   MULTIFUNCTIONAL YEAST HIGH-COPY-NUMBER SHUTTLE VECTORS [J].
CHRISTIANSON, TW ;
SIKORSKI, RS ;
DANTE, M ;
SHERO, JH ;
HIETER, P .
GENE, 1992, 110 (01) :119-122
[5]   A MAJOR 125-KD MEMBRANE GLYCOPROTEIN OF SACCHAROMYCES-CEREVISIAE IS ATTACHED TO THE LIPID BILAYER THROUGH AN INOSITOL-CONTAINING PHOSPHOLIPID [J].
CONZELMANN, A ;
RIEZMAN, H ;
DESPONDS, C ;
BRON, C .
EMBO JOURNAL, 1988, 7 (07) :2233-2240
[6]  
De Nobel Hans, 1994, Trends in Cell Biology, V4, P42, DOI 10.1016/0962-8924(94)90003-5
[7]   Regulation by low temperatures and anaerobiosis of a yeast gene specifying a putative GPI-anchored plasma membrane [J].
Donzeau, M ;
Bourdineaud, JP ;
Lauquin, GJM .
MOLECULAR MICROBIOLOGY, 1996, 20 (02) :449-459
[8]  
DONZEAU M, 1993, THESIS U BORDEAUX 2
[9]   A NEW DOL-P-MAN-PROTEIN O-D-MANNOSYLTRANSFERASE ACTIVITY FROM SACCHAROMYCES-CEREVISIAE [J].
GENTZSCH, M ;
STRAHLBOLSINGER, S ;
TANNER, W .
GLYCOBIOLOGY, 1995, 5 (01) :77-82
[10]   IMPROVED METHOD FOR HIGH-EFFICIENCY TRANSFORMATION OF INTACT YEAST-CELLS [J].
GIETZ, D ;
STJEAN, A ;
WOODS, RA ;
SCHIESTL, RH .
NUCLEIC ACIDS RESEARCH, 1992, 20 (06) :1425-1425