Using functional domain composition to predict enzyme family classes

被引:50
作者
Cai, YD [1 ]
Chou, KC
机构
[1] Univ Manchester, Inst Sci & Technol, Biomol Sci Dept, Manchester M60 1QD, Lancs, England
[2] Gordon Life Sci Inst, San Diego, CA 92130 USA
[3] TIBDD, Tianjin, Peoples R China
关键词
classification of enzyme commission; enzymatic attribute; functional domain composition; 20% threshold cutoff; nearest neighbor predictor; bioinformatics; proteomics;
D O I
10.1021/pr049835p
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
According to their main EC (Enzyme Commission) numbers, enzymes are classified into the following 6 main classes: oxidoreductases, transferases, hydrolases, lyases, isomerases, and ligases. A new method has been developed to predict the enzymatic attribute of proteins by introducing the functional domain composition to formulate a given protein sequence. The advantage by doing so is that both the sequence-order-related features and the function-related features are naturally incorporated in the predictor. As a demonstration, the jackknife cross-validation test was performed on a dataset that consists of proteins with only less than 20% sequence identity to each other in order to get rid of any homologous bias. The overall success rate thus obtained was 85% in identifying the enzyme family classes (including the identification of nonenzyme protein sequences as well). The success rate is significantly higher than those obtained by the other methods on such a stringent dataset. This indicates that using the functional domain composition to represent protein samples for statistical prediction is indeed very promising, and will become a powerful tool in bioinformatics and proteomics.
引用
收藏
页码:109 / 111
页数:3
相关论文
共 31 条
[1]  
[Anonymous], 1992, ENZYME NOMENCLATURE
[2]   The InterPro database, an integrated documentation resource for protein families, domains and functional sites [J].
Apweiler, R ;
Attwood, TK ;
Bairoch, A ;
Bateman, A ;
Birney, E ;
Biswas, M ;
Bucher, P ;
Cerutti, T ;
Corpet, F ;
Croning, MDR ;
Durbin, R ;
Falquet, L ;
Fleischmann, W ;
Gouzy, J ;
Hermjakob, H ;
Hulo, N ;
Jonassen, I ;
Kahn, D ;
Kanapin, A ;
Karavidopoulou, Y ;
Lopez, R ;
Marx, B ;
Mulder, NJ ;
Oinn, TM ;
Pagni, M ;
Servant, F ;
Sigrist, CJA ;
Zdobnov, EM .
NUCLEIC ACIDS RESEARCH, 2001, 29 (01) :37-40
[3]  
Bahar I, 1997, PROTEINS, V29, P172, DOI 10.1002/(SICI)1097-0134(199710)29:2<172::AID-PROT5>3.3.CO
[4]  
2-D
[5]   The SWISS-PROT protein sequence data bank and its supplement TrEMBL [J].
Bairoch, A ;
Apweller, R .
NUCLEIC ACIDS RESEARCH, 1997, 25 (01) :31-36
[6]   The ENZYME database in 2000 [J].
Bairoch, A .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :304-305
[7]   Enzyme family classification by support vector machines [J].
Cai, CZ ;
Han, LY ;
Ji, ZL ;
Chen, YZ .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2004, 55 (01) :66-76
[8]  
CHANDONIA JM, 1995, PROTEIN SCI, V4, P275
[9]   A JOINT PREDICTION OF THE FOLDING TYPES OF 1490 HUMAN PROTEINS FROM THEIR GENETIC CODONS [J].
CHOU, JJW ;
ZHANG, CT .
JOURNAL OF THEORETICAL BIOLOGY, 1993, 161 (02) :251-262
[10]   PREDICTION OF PROTEIN STRUCTURAL CLASSES [J].
CHOU, KC ;
ZHANG, CT .
CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1995, 30 (04) :275-349