TRIANGULABLE LEIBNIZ ALGEBRAS

被引:0
作者
Burch, Tiffany [1 ]
Stitzinger, Ernie [1 ]
机构
[1] N Carolina State Univ, Dept Math, Box 8205, Raleigh, NC 27695 USA
关键词
Leibniz; Lie's theorem; Triangulable; Two recognizable; FINITE VARIETIES; LIE-ALGEBRAS;
D O I
10.1080/00927872.2015.1085997
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A converse to Lie's theorem for Leibniz algebras is found and generalized. The result is used to find cases in which the generalized property, called triangulable, is 2-recognizable; that is, if all 2-generated subalgebras are triangulable, then the algebra is also. Triangulability joins solvability, supersolvability, strong solvability, and nilpotentcy as a 2-recognizable property for classes of Leibniz algebras.
引用
收藏
页码:3622 / 3625
页数:4
相关论文
共 8 条
[1]   SOME THEOREMS ON LEIBNIZ ALGEBRAS [J].
Barnes, Donald W. .
COMMUNICATIONS IN ALGEBRA, 2011, 39 (07) :2463-2472
[2]  
Bosko L., 2011, Involve, V4, P293, DOI DOI 10.2140/INVOLVE.2011.4.293
[3]   Two generator subalgebras of Lie algebras [J].
Bowman, Kevin ;
Towers, David A. ;
Varea, Vicente R. .
LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (05) :429-438
[4]   THE THEORY OF FORMATIONS CLOSED IN REGARD TO SUBGROUPS - FINITE VARIETIES [J].
BRANDL, R .
JOURNAL OF ALGEBRA, 1981, 73 (01) :1-22
[5]   2-recognizeable classes of Leibniz algebras [J].
Burch, Tiffany ;
Harris, Meredith ;
McAlister, Allison ;
Rogers, Elyse ;
Stitzinger, Ernie ;
Sullivan, S. McKay .
JOURNAL OF ALGEBRA, 2015, 423 :506-513
[6]  
Demir I., 2014, Recent Advances in Representation Theory, Quantum Groups, Algebraic Geometry, and Related Topics, V623, P41
[7]  
Loday J.-L., 1993, Enseign. Math, V39, P269
[8]   SOME FINITE VARIETIES OF LIE-ALGEBRAS [J].
MONEYHUN, K ;
STITZINGER, E .
JOURNAL OF ALGEBRA, 1991, 143 (01) :173-178