MODIFIED LIMITED MEMORY BFGS METHOD WITH NONMONOTONE LINE SEARCH FOR UNCONSTRAINED OPTIMIZATION

被引:21
作者
Yuan, Gonglin [1 ]
Wei, Zengxin [1 ]
Wu, Yanlin [1 ]
机构
[1] Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
关键词
limited memory BFGS method; optimization; nonmonotone; global convergence; QUASI-NEWTON METHODS; CONJUGATE-GRADIENT METHODS; GLOBAL CONVERGENCE; SUPERLINEAR CONVERGENCE; PARTITIONED BFGS; ALGORITHM;
D O I
10.4134/JKMS.2010.47.4.767
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose two limited memory BFGS algorithms with a nonmonotone line search technique for unconstrained optimization problems. The global convergence of the given methods will be established under suitable conditions. Numerical results show that the presented algorithms are more competitive than the normal BFGS method.
引用
收藏
页码:767 / 788
页数:22
相关论文
共 51 条
[1]  
[Anonymous], 1983, Prentice Hall series in computational mathematics
[2]  
Broyden C. G., 1973, Journal of the Institute of Mathematics and Its Applications, V12, P223
[3]   GLOBAL CONVERGENCE OF A CLASS OF QUASI-NEWTON METHODS ON CONVEX PROBLEMS [J].
BYRD, RH ;
NOCEDAL, J ;
YUAN, YX .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (05) :1171-1190
[4]   A TOOL FOR THE ANALYSIS OF QUASI-NEWTON METHODS WITH APPLICATION TO UNCONSTRAINED MINIMIZATION [J].
BYRD, RH ;
NOCEDAL, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (03) :727-739
[5]   REPRESENTATIONS OF QUASI-NEWTON MATRICES AND THEIR USE IN LIMITED MEMORY METHODS [J].
BYRD, RH ;
NOCEDAL, J ;
SCHNABEL, RB .
MATHEMATICAL PROGRAMMING, 1994, 63 (02) :129-156
[6]  
Dai YH, 2003, J COMPUT MATH, V21, P311
[7]  
Dai YH, 2003, SIAM J OPTIMIZ, V13, P693
[8]  
DAVIDON WC, 1959, ANL599 AEC
[9]   TRUNCATED-NEWTON ALGORITHMS FOR LARGE-SCALE UNCONSTRAINED OPTIMIZATION [J].
DEMBO, RS ;
STEIHAUG, T .
MATHEMATICAL PROGRAMMING, 1983, 26 (02) :190-212
[10]   QUASI-NEWTON METHODS, MOTIVATION AND THEORY [J].
DENNIS, JE ;
MORE, JJ .
SIAM REVIEW, 1977, 19 (01) :46-89