Ubiquitous atmospheric production of organic acids mediated by cloud droplets

被引:112
作者
Franco, B. [1 ,2 ]
Blumenstock, T. [3 ]
Cho, C. [1 ]
Clarisse, L. [2 ]
Clerbaux, C. [2 ,4 ]
Coheur, P. -F. [2 ]
De Maziere, M. [5 ]
De Smedt, I. [5 ]
Dorn, H. -P. [1 ]
Emmerichs, T. [1 ]
Fuchs, H. [1 ]
Gkatzelis, G. [1 ]
Griffith, D. W. T. [6 ]
Gromov, S. [7 ,8 ]
Hannigan, J. W. [9 ]
Hase, F. [3 ]
Hohaus, T. [1 ]
Jones, N. [6 ]
Kerkweg, A. [1 ]
Kiendler-Scharr, A. [1 ]
Lutsch, E. [10 ]
Mahieu, E. [11 ]
Novelli, A. [1 ]
Ortega, I. [9 ]
Paton-Walsh, C. [6 ]
Pommier, M. [4 ,12 ]
Pozzer, A. [7 ]
Reimer, D. [1 ]
Rosanka, S. [1 ]
Sander, R. [7 ]
Schneider, M. [3 ]
Strong, K. [10 ]
Tillmann, R. [1 ]
Van Roozendael, M. [5 ]
Vereecken, L. [1 ]
Vigouroux, C. [5 ]
Wahner, A. [1 ]
Taraborrelli, D. [1 ]
机构
[1] Forschungszentrum Julich, Inst Energy & Climate Res, IEK Troposphere 8, Julich, Germany
[2] Univ Libre Bruxelles ULB, Spect Quantum Chem & Atmospher Remote Sensing, Brussels, Belgium
[3] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Karlsruhe, Germany
[4] Sorbonne Univ, CNRS, UVSQ, LATMOS IPSL, Paris, France
[5] Royal Belgian Inst Space Aeron, Brussels, Belgium
[6] Univ Wollongong, Sch Earth Atmospher & Life Sci, Ctr Atmospher Chem, Wollongong, NSW, Australia
[7] Max Planck Inst Chem, Mainz, Germany
[8] Roshydromet & RAS, Inst Global Climate & Ecol, Moscow, Russia
[9] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA
[10] Univ Toronto, Dept Phys, Toronto, ON, Canada
[11] Univ Liege, Inst Astrophys & Geophys, Liege, Belgium
[12] Ricardo Energy & Environm, Harwell, Berks, England
基金
澳大利亚研究理事会; 加拿大自然科学与工程研究理事会; 美国国家航空航天局; 加拿大创新基金会; 美国国家科学基金会;
关键词
BIOMASS BURNING EMISSIONS; OH-INITIATED OXIDATION; FORMIC-ACID; CYCLE; CHEMISTRY; MECHANISM; MODEL; INVERSION; AEROSOLS; KINETICS;
D O I
10.1038/s41586-021-03462-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The oxidation of hydrated formaldehyde from cloud droplets is the dominant source of atmospheric formic acid, increasing atmospheric acidity by reducing cloud and rainwater pH. Atmospheric acidity is increasingly determined by carbon dioxide and organic acids(1-3). Among the latter, formic acid facilitates the nucleation of cloud droplets(4) and contributes to the acidity of clouds and rainwater(1,5). At present, chemistry-climate models greatly underestimate the atmospheric burden of formic acid, because key processes related to its sources and sinks remain poorly understood(2,6-9). Here we present atmospheric chamber experiments that show that formaldehyde is efficiently converted to gaseous formic acid via a multiphase pathway that involves its hydrated form, methanediol. In warm cloud droplets, methanediol undergoes fast outgassing but slow dehydration. Using a chemistry-climate model, we estimate that the gas-phase oxidation of methanediol produces up to four times more formic acid than all other known chemical sources combined. Our findings reconcile model predictions and measurements of formic acid abundance. The additional formic acid burden increases atmospheric acidity by reducing the pH of clouds and rainwater by up to 0.3. The diol mechanism presented here probably applies to other aldehydes and may help to explain the high atmospheric levels of other organic acids that affect aerosol growth and cloud evolution.
引用
收藏
页码:233 / +
页数:17
相关论文
共 46 条
[1]   Emission factors for open and domestic biomass burning for use in atmospheric models [J].
Akagi, S. K. ;
Yokelson, R. J. ;
Wiedinmyer, C. ;
Alvarado, M. J. ;
Reid, J. S. ;
Karl, T. ;
Crounse, J. D. ;
Wennberg, P. O. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (09) :4039-4072
[2]   Oxidation of Volatile Organic Compounds as the Major Source of Formic Acid in a Mixed Forest Canopy [J].
Alwe, Hariprasad D. ;
Millet, Dylan B. ;
Chen, Xin ;
Raff, Jonathan D. ;
Payne, Zachary C. ;
Fledderman, Kathryn .
GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (05) :2940-2948
[3]   Emission of trace gases and aerosols from biomass burning [J].
Andreae, MO ;
Merlet, P .
GLOBAL BIOGEOCHEMICAL CYCLES, 2001, 15 (04) :955-966
[4]   The Reaction between CH3O2 and OH Radicals: Product Yields and Atmospheric Implications [J].
Assaf, Emmanuel ;
Sheps, Leonid ;
Whalley, Lisa ;
Heard, Dwayne ;
Tomas, Alexandre ;
Schoemaecker, Coralie ;
Fittschen, Christa .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (04) :2170-2177
[5]   Inverse modeling of the global CO cycle 2.: Inversion of 13C/12C and 18O/16O isotope ratios [J].
Bergamaschi, P ;
Hein, R ;
Brenninkmeijer, CAM ;
Crutzen, PJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D2) :1929-1945
[6]   Mechanism of the OH-initiated oxidation of hydroxyacetone over the temperature range 236-298 K [J].
Butkovskaya, Nadezhda I. ;
Pouvesle, Nicolas ;
Kukui, Alexander ;
Mu, Yujing ;
Le Bras, Georges .
JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (21) :6833-6843
[7]   Mechanism of the OH-initiated oxidation of glycolaldehyde over the temperature range 233-296 K [J].
Butkovskaya, Nadezhda I. ;
Pouvesle, Nicolas ;
Kukui, Alexandre ;
Le Bra, Georges .
JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (50) :13492-13499
[8]   Global atmospheric budget of simple monocyclic aromatic compounds [J].
Cabrera-Perez, David ;
Taraborrelli, Domenico ;
Sander, Rolf ;
Pozzer, Andrea .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (11) :6931-6947
[9]   Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate [J].
Caravan, Rebecca L. ;
Vansco, Michael F. ;
Au, Kendrew ;
Khan, M. Anwar H. ;
Li, Yu-Lin ;
Winiberg, Frank A. F. ;
Zuraski, Kristen ;
Lin, Yen-Hsiu ;
Chao, Wen ;
Trongsiriwat, Nisalak ;
Walsh, Patrick J. ;
Osborn, David L. ;
Percival, Carl J. ;
Lin, Jim Jr-Min ;
Shallcross, Dudley E. ;
Sheps, Leonid ;
Klippenstein, Stephen J. ;
Taatjes, Craig A. ;
Lester, Marsha, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (18) :9733-9740
[10]   A Large Underestimate of Formic Acid from Tropical Fires: Constraints from Space-Borne Measurements [J].
Chaliyakunnel, S. ;
Millet, D. B. ;
Wells, K. C. ;
Cady-Pereira, K. E. ;
Shephard, M. W. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (11) :5631-5640