Graphene supported α-MnO2 nanocomposite cathodes for lithium ion batteries

被引:31
作者
Cetinkaya, Tugrul [1 ]
Tokur, Mahmud [1 ]
Ozcan, Seyma [1 ]
Uysal, Mehmet [1 ]
Akbulut, Hatem [1 ]
机构
[1] Sakarya Univ, Fac Engn, Dept Met & Mat Engn, Esentepe Campus, TR-54187 Sakarya, Turkey
关键词
alpha-MnO2; Graphene; Composite cathode; Lithium ion battery; HIGH-PERFORMANCE; FACILE SYNTHESIS; DOPED MNO2; BETA-MNO2; ELECTRODE; HYBRID; OXIDE; COMPOSITE; INSERTION; TIO2;
D O I
10.1016/j.ijhydene.2015.12.092
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, Graphene/alpha-MnO2 nanocomposite cathodes were produced using ultra-sonication and mechanical alloying facilities. Before production of Graphene/alpha-MnO2 composites, Graphene structure was fabricated by reduction of Graphene Oxide produced using Hummer's Method and alpha-MnO2 nanowires was synthesized using microwave hydrothermal synthesis method. The effect of Graphene support on the electrochemical performance of the Graphene/alpha-MnO2 nanocomposite cathodes were investigated by dispersing different amounts of Graphene (10 wt.%, 30 wt.% and 50 wt.%) in the composite cathodes. Structures of the Graphene/alpha-MnO2 nanocomposites were characterized using Xray diffraction (XRD) and Raman Spectroscopy techniques. Surface morphology of the electrodes was characterized using scanning electron microscopy (SEM). Electrochemical cycling tests of the Graphene/alpha-MnO2 nanocomposite cathodes were performed in the voltage range of 1.5 V-4.5 V at a constant current density of 50 mA/g (C/5). This study proved that Graphene enhance the electrochemical reaction of alpha-MnO2 and provide stable cathode materials. Eventually, Graphene/alpha-MnO2 cathode containing 50 wt.% Graphene showed 225 mAh/g discharge capacity even after 200 cycles. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:6945 / 6953
页数:9
相关论文
共 33 条
[1]   Nanosized silver-coated and doped manganese dioxide for rechargeable lithium batteries [J].
Abuzeid, Hanaa M. ;
Hashem, Ahmed M. ;
Narayanan, N. ;
Ehrenberg, Helmut ;
Julien, C. M. .
SOLID STATE IONICS, 2011, 182 (01) :108-115
[2]   A kinetic study of electrochemical lithium insertion in nanosized rutile β-MnO2 by impedance spectroscopy [J].
Bach, S. ;
Pereira-Ramos, J. P. ;
Willmann, P. .
ELECTROCHIMICA ACTA, 2011, 56 (27) :10016-10022
[3]   Framework doping of iron in tunnel structure cryptomelane [J].
Cai, J ;
Liu, J ;
Willis, WS ;
Suib, SL .
CHEMISTRY OF MATERIALS, 2001, 13 (07) :2413-2422
[4]   A parametric study on the rapid synthesis of one dimensional (1D) α-MnO2 nanowires [J].
Cetinkaya, T. ;
Tocoglu, U. ;
Uysal, M. ;
Guler, M. O. ;
Akbulut, H. .
MICROELECTRONIC ENGINEERING, 2014, 126 :54-59
[5]   Enhancing electrochemical performance of silicon anodes by dispersing MWCNTs using planetary ball milling [J].
Cetinkaya, T. ;
Guler, M. O. ;
Akbulut, H. .
MICROELECTRONIC ENGINEERING, 2013, 108 :169-176
[6]   Developing lithium ion battery silicon/cobalt core-shell electrodes for enhanced electrochemical properties [J].
Cetinkaya, Tugrul ;
Uysal, Mehmet ;
Guler, Mehmet O. ;
Akbulut, Hatem .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (36) :21405-21413
[7]   Free-standing flexible graphene oxide paper electrode for rechargeable Li-O2 batteries [J].
Cetinkaya, Tugrul ;
Ozcan, Seyma ;
Uysal, Mehmet ;
Guler, Mehmet O. ;
Akbulut, Hatem .
JOURNAL OF POWER SOURCES, 2014, 267 :140-147
[8]   A different method for producing a flexible LiMn2O4/MWCNT composite electrode for lithium ion batteries [J].
Cetinkaya, Tugrul ;
Akbulut, Ahsen ;
Guler, Mehmet O. ;
Akbulut, Hatem .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2014, 44 (02) :209-214
[9]   Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries [J].
Cheng, FY ;
Zhao, JZ ;
Song, W ;
Li, CS ;
Ma, H ;
Chen, J ;
Shen, PW .
INORGANIC CHEMISTRY, 2006, 45 (05) :2038-2044
[10]   Facile synthesis of monodisperse ruthenium nanoparticles supported on graphene for hydrogen generation from hydrolysis of ammonia borane [J].
Du, Cheng ;
Ao, Qiang ;
Cao, Nan ;
Yang, Lan ;
Luo, Wei ;
Cheng, Gongzhen .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (18) :6180-6187