Many-body hierarchy of dissipative timescales in a quantum computer

被引:22
作者
Sommer, Oscar Emil [1 ,2 ]
Piazza, Francesco [2 ]
Luitz, David J. [2 ]
机构
[1] Univ Cambridge, Cambridge CB2 1TQ, England
[2] Max Planck Inst Phys Komplexer Syst, Noethnitzer Str 38, Dresden, Germany
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 02期
关键词
STATISTICAL-MECHANICS; SIMULATION; DYNAMICS; THERMALIZATION; ALGORITHM; CHAOS;
D O I
10.1103/PhysRevResearch.3.023190
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that current noisy quantum computers are ideal platforms for the simulation of quantum many-body dynamics in generic open systems. We demonstrate this using the IBM Quantum Computer as an experimental platform for confirming the theoretical prediction from Wang et al., [Phys. Rev. Lett. 124, 100604 (2020)] of an emergent hierarchy of relaxation timescales of many-body observables involving different numbers of qubits. Using different protocols, we leverage the intrinsic dissipation of the machine responsible for gate errors, to implement a quantum simulation of generic (i.e., structureless) local dissipative interactions.
引用
收藏
页数:9
相关论文
共 42 条
[1]   Digital quantum simulation of fermionic models with a superconducting circuit [J].
Barends, R. ;
Lamata, L. ;
Kelly, J. ;
Garcia-Alvarez, L. ;
Fowler, A. G. ;
Megrant, A. ;
Jeffrey, E. ;
White, T. C. ;
Sank, D. ;
Mutus, J. Y. ;
Campbell, B. ;
Chen, Yu ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Hoi, I. -C. ;
Neill, C. ;
O'Malley, P. J. J. ;
Quintana, C. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Solano, E. ;
Martinis, John M. .
NATURE COMMUNICATIONS, 2015, 6
[2]   An open-system quantum simulator with trapped ions [J].
Barreiro, Julio T. ;
Mueller, Markus ;
Schindler, Philipp ;
Nigg, Daniel ;
Monz, Thomas ;
Chwalla, Michael ;
Hennrich, Markus ;
Roos, Christian F. ;
Zoller, Peter ;
Blatt, Rainer .
NATURE, 2011, 470 (7335) :486-491
[3]   Quantum chaos and thermalization in isolated systems of interacting particles [J].
Borgonovi, F. ;
Izrailev, F. M. ;
Santos, L. F. ;
Zelevinsky, V. G. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 626 :1-58
[4]   Spectral Gaps and Midgap States in Random Quantum Master Equations [J].
Can, Tankut ;
Oganesyan, Vadim ;
Orgad, Dror ;
Gopalakrishnan, Sarang .
PHYSICAL REVIEW LETTERS, 2019, 123 (23)
[5]   Random Lindblad dynamics [J].
Can, Tankut .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (48)
[6]   From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics [J].
D'Alessio, Luca ;
Kafri, Yariv ;
Polkovnikov, Anatoli ;
Rigol, Marcos .
ADVANCES IN PHYSICS, 2016, 65 (03) :239-362
[7]   Driven-dissipative quantum mechanics on a lattice: Simulating a fermionic reservoir on a quantum computer [J].
Del Re, Lorenzo ;
Rost, Brian ;
Kemper, A. F. ;
Freericks, J. K. .
PHYSICAL REVIEW B, 2020, 102 (12)
[8]   Universal Spectra of Random Lindblad Operators [J].
Denisov, Sergey ;
Laptyeva, Tetyana ;
Tarnowski, Wojciech ;
Chruscinski, Dariusz ;
Zyczkowski, Karol .
PHYSICAL REVIEW LETTERS, 2019, 123 (14)
[9]   QUANTUM STATISTICAL-MECHANICS IN A CLOSED SYSTEM [J].
DEUTSCH, JM .
PHYSICAL REVIEW A, 1991, 43 (04) :2046-2049
[10]   Eigenstate thermalization hypothesis [J].
Deutsch, Joshua M. .
REPORTS ON PROGRESS IN PHYSICS, 2018, 81 (08)