Forecasting of Short-Term Metro Ridership with Support Vector Machine Online Model

被引:62
|
作者
Wang, Xuemei [1 ]
Zhang, Ning [2 ]
Zhang, Yunlong [3 ]
Shi, Zhuangbin [2 ]
机构
[1] Tongji Zhejiang Coll, Dept Transportat Engn, Jiaxing 314000, Peoples R China
[2] Southeast Univ, Intelligent Transportat Syst Inst, Minist Educ, Nanjing 211189, Jiangsu, Peoples R China
[3] Texas A&M Univ, Zachry Dept Civil Engn, 3136 TAMU, College Stn, TX USA
关键词
TRAFFIC FLOW PREDICTION; PASSENGER FLOW; FEATURE-SELECTION; SPEED ESTIMATION; NEURAL-NETWORK; KALMAN FILTER; VOLUME; OPTIMIZATION; SVM;
D O I
10.1155/2018/3189238
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Forecasting for short-term ridership is the foundation of metro operation and management. A prediction model is necessary to seize the weekly periodicity and nonlinearity characteristics of short-term ridership in real-time. First, this research captures the inherent periodicity of ridership via seasonal autoregressive integrated moving average model (SARIMA) and proposes a support vector machine overall online model (SVMOOL) which insets the weekly periodic characteristics and trains the updated data day by day. Then, this research captures the nonlinear characteristics of the ridership via successive ridership value inputs and proposes a support vector machine partial online model (SVMPOL) which insets the nonlinear characteristics and trains the updated data of the predicted day by time interval (such as 5-min). Afterwards, to avoid the drawbacks and to take advantages of the strengths of the two individual online models, this research takes the average predicted values of two models as the final predicted values, which are called support vector machine combined online model (SVMCOL). Finally, this research uses the 5-min ridership at Zhujianglu and Sanshanjie Stations of Nanjing Metro to compare the SVMCOL model with three well-known prediction models including SARIMA, back-propagation neural network (BPNN), and SVM models. The resultant performance comparisons suggest that SARIMA is superior for the stable weekday ridership to other models. Yet the SVMCOL model is the best performer for the unstable weekend ridership and holiday ridership. It shows that for metro operation manager that gear toward timely response to real-world unstable and abnormal situations, the SVMCOL may be a better tool than the three well-known models.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Research on hybrid ARIMA and support vector machine model in short term load forecasting
    He, Yujun
    Zhu, Youchan
    Duan, Dongxing
    ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 1, 2006, : 804 - 808
  • [32] Short-Term Load Forecasting Using Informative Vector Machine
    Kurata, Eitaro
    Mori, Hiroyuki
    ELECTRICAL ENGINEERING IN JAPAN, 2009, 166 (02) : 23 - 31
  • [33] Support vector machines for short-term electrical load forecasting
    Mohandes, M
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2002, 26 (04) : 335 - 345
  • [34] Fuzzy support vector regressions for short-term load forecasting
    Luo, Jian
    Zheng, Yukai
    Hong, Tao
    Luo, An
    Yang, Xueqi
    FUZZY OPTIMIZATION AND DECISION MAKING, 2024, : 363 - 385
  • [35] A Short-term Load Forecasting Based on Support Vector Regression
    Yu, Lu
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON MECHATRONICS, ELECTRONIC, INDUSTRIAL AND CONTROL ENGINEERING, 2015, 8 : 1055 - 1059
  • [36] Short-term load forecasting based on self-organizing map and support vector machine
    Bao, ZJ
    Pi, DY
    Sun, YX
    ADVANCES IN NATURAL COMPUTATION, PT 1, PROCEEDINGS, 2005, 3610 : 688 - 691
  • [37] Short-term power load forecasting based on support vector machine and particle swarm optimization
    Qiang, Song
    Pu, Yang
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2018, 13 (13) : 1 - 8
  • [38] Short-term load forecasting based on correlation coefficient and weighted support vector regression machine
    Liu, Limei
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND MANAGEMENT INNOVATION, 2015, 28 : 1077 - 1081
  • [39] Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm
    Li, Ling-Ling
    Zhao, Xue
    Tseng, Ming-Lang
    Tan, Raymond R.
    JOURNAL OF CLEANER PRODUCTION, 2020, 242 (242)
  • [40] Short-term load forecasting using support vector machine with SCE-UA algorithm
    Li, Gang
    Cheng, Chun-tian
    Lin, Jian-yi
    Zeng, Yun
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 1, PROCEEDINGS, 2007, : 290 - +