Emergence of robustness in networks of networks

被引:8
作者
Roth, Kevin [1 ,2 ,3 ]
Morone, Flaviano [1 ,2 ]
Min, Byungjoon [1 ,2 ]
Makse, Hernan A. [1 ,2 ]
机构
[1] CUNY City Coll, Levich Inst, New York, NY 10031 USA
[2] CUNY City Coll, Dept Phys, New York, NY 10031 USA
[3] Swiss Fed Inst Technol, Theoret Phys, CH-8093 Zurich, Switzerland
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
SMALL-WORLD;
D O I
10.1103/PhysRevE.95.062308
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A model of interdependent networks of networks (NONs) was introduced recently [Proc. Natl. Acad. Sci. (USA) 114, 3849 (2017)] in the context of brain activation to identify the neural collective influencers in the brain NON. Here we investigate the emergence of robustness in such a model, and we develop an approach to derive an exact expression for the random percolation transition in Erdos-Renyi NONs of this kind. Analytical calculations are in agreement with numerical simulations, and highlight the robustness of the NON against random node failures, which thus presents a new robust universality class of NONs. The key aspect of this robust NON model is that a node can be activated even if it does not belong to the giant mutually connected component, thus allowing the NON to be built from below the percolation threshold, which is not possible in previous models of interdependent networks. Interestingly, the phase diagram of the model unveils particular patterns of interconnectivity for which the NON is most vulnerable, thereby marking the boundary above which the robustness of the system improves with increasing dependency connections.
引用
收藏
页数:7
相关论文
共 17 条
[1]  
[Anonymous], 2010, Networks: An Introduction, DOI 10.1162/artl_r_00062
[2]   Mutually connected component of networks of networks with replica nodes [J].
Bianconi, Ginestra ;
Dorogovtsev, Sergey N. ;
Mendes, Jose F. F. .
PHYSICAL REVIEW E, 2015, 91 (01)
[3]   Catastrophic cascade of failures in interdependent networks [J].
Buldyrev, Sergey V. ;
Parshani, Roni ;
Paul, Gerald ;
Stanley, H. Eugene ;
Havlin, Shlomo .
NATURE, 2010, 464 (7291) :1025-1028
[4]   Metric structure of random networks [J].
Dorogovtsev, SN ;
Mendes, JFF ;
Samukhin, AN .
NUCLEAR PHYSICS B, 2003, 653 (03) :307-338
[5]   The conundrum of functional brain networks: small-world efficiency or fractal modularity [J].
Gallos, Lazaros K. ;
Sigman, Mariano ;
Makse, Hernan A. .
FRONTIERS IN PHYSIOLOGY, 2012, 3
[6]   A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks [J].
Gallos, Lazaros K. ;
Makse, Hernan A. ;
Sigman, Mariano .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (08) :2825-2830
[7]   Networks formed from interdependent networks [J].
Gao, Jianxi ;
Buldyrev, Sergey V. ;
Stanley, H. Eugene ;
Havlin, Shlomo .
NATURE PHYSICS, 2012, 8 (01) :40-48
[8]   Brain states: Top-down influences in sensory processing [J].
Gilbert, Charles D. ;
Sigman, Mariano .
NEURON, 2007, 54 (05) :677-696
[9]   Percolation on Sparse Networks [J].
Karrer, Brian ;
Newman, M. E. J. ;
Zdeborova, Lenka .
PHYSICAL REVIEW LETTERS, 2014, 113 (20)
[10]  
McCulloch W. S., 1943, B MATH BIOPHYS, V5, P115, DOI [DOI 10.1007/BF02478259, 10.1007/BF02478259]