On the Numerical Range of Operators on some Special Banach Spaces

被引:0
作者
Mandal, Kalidas [1 ]
Bhanja, Aniket [2 ]
Bag, Santanu [2 ]
Paul, Kallol [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata, W Bengal, India
[2] Vivekananda Coll Thakurpukur, Dept Math, Kolkata, W Bengal, India
关键词
Semi-inner-product; numerical range; convex set;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The numerical range of a bounded linear operator on a complex Banach space need not be convex unlike that on a Hilbert space. The aim of this paper is to study operators T on l(p)(2) for which the numerical range is convex. We also obtain a nice relation between V(T) and V(T-t) considering T is an element of L(l(p)(2) ) and T-t is an element of L(l(q)(2)), where T-t denotes the transpose of T and p and q are conjugate real numbers i.e., 1 < p, q < infinity and 1/p + 1/q = 1.
引用
收藏
页码:371 / 380
页数:10
相关论文
共 9 条
[1]  
[Anonymous], 1961, Trans. Am. Math. Soc.
[2]  
Bauer F.L.:., 1962, Numer. Math, V4, P103, DOI DOI 10.1007/BF01386300
[3]  
Bonsall F. F., 1971, London Mathematical Society Lecture Note Series, V2
[4]  
Bonsall FF., 1973, NUMERICAL RANGES 2, DOI [10.1017/CBO9780511662515, DOI 10.1017/CBO9780511662515]
[5]  
GARNAUT R, 1992, ECONOMIC REFORM AND INTERNATIONALISATION: CHINA AND THE PACIFIC REGION, P1
[6]  
GILES JR, 1967, T AM MATH SOC, V129, P436
[7]  
Gustafson K. E., 1997, Numerical Range. The Field of Values of Linear Operators and Matrices
[8]  
HALMOS PR, 2012, HILBERT SPACE PROBLE, V19
[9]   The algebraic analogues of a Fejer clause [J].
Toeplitz, O .
MATHEMATISCHE ZEITSCHRIFT, 1918, 2 :187-197