Nonreciprocal phonon laser in a spinning microwave magnomechanical system

被引:81
作者
Xu, Yi [1 ,2 ]
Liu, Jin-Yu [1 ,2 ]
Liu, Wenjing [1 ,2 ]
Xiao, Yun-Feng [1 ,2 ,3 ,4 ]
机构
[1] Peking Univ, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Phys, Frontiers Sci Ctr Nanoptoelect, Beijing 100871, Peoples R China
[3] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
[4] Peking Univ, Yangtze Delta Inst Optoelect, Nantong 226010, Jiangsu, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
FLOW;
D O I
10.1103/PhysRevA.103.053501
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A nonreciprocal phonon laser in a spinning microwave magnomechanical system is proposed. The system consists of a spinning microwave resonator coupled with an yttrium iron garnet sphere. The Fizeau light-dragging effect caused by the spinning of the resonator leads to a significant difference in the mechanical gain and the threshold power for driving the resonator from the opposite directions, which results in a nonreciprocal phonon laser. The nonreciprocal phonon laser is highly tunable by the spinning speed and direction of the resonator. These results provide an experimentally feasible approach for exploring various nonreciprocal effects in cavity magnomechanical systems, and may find applications in photon, magnon, and phonon manipulations in manybody coupled systems.
引用
收藏
页数:8
相关论文
共 44 条
[1]  
Andrews RW, 2014, NAT PHYS, V10, P321, DOI [10.1038/NPHYS2911, 10.1038/nphys2911]
[2]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[3]   Optical detection of radio waves through a nanomechanical transducer [J].
Bagci, T. ;
Simonsen, A. ;
Schmid, S. ;
Villanueva, L. G. ;
Zeuthen, E. ;
Appel, J. ;
Taylor, J. M. ;
Sorensen, A. ;
Usami, K. ;
Schliesser, A. ;
Polzik, E. S. .
NATURE, 2014, 507 (7490) :81-85
[4]   Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems [J].
Bai, Lihui ;
Harder, M. ;
Chen, Y. P. ;
Fan, X. ;
Xiao, J. Q. ;
Hu, C. -M. .
PHYSICAL REVIEW LETTERS, 2015, 114 (22)
[5]  
Bochmann J, 2013, NAT PHYS, V9, P712, DOI [10.1038/nphys2748, 10.1038/NPHYS2748]
[6]   Feasibility analysis of phonon lasers [J].
Chen, J ;
Khurgin, JB .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2003, 39 (04) :600-607
[7]   Quantum acoustics with superconducting qubits [J].
Chu, Yiwen ;
Kharel, Prashanta ;
Renninger, William H. ;
Burkhart, Luke D. ;
Frunzio, Luigi ;
Rakich, Peter T. ;
Schoelkopf, Robert J. .
SCIENCE, 2017, 358 (6360) :199-202
[8]   Static non-reciprocity in mechanical metamaterials [J].
Coulais, Corentin ;
Sounas, Dimitrios ;
Alu, Andrea .
NATURE, 2017, 542 (7642) :461-+
[9]   Phonon laser in a cavity magnomechanical system [J].
Ding, Ming-Song ;
Zheng, Li ;
Li, Chong .
SCIENTIFIC REPORTS, 2019, 9 (1)
[10]   A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator [J].
Feng, X. L. ;
White, C. J. ;
Hajimiri, A. ;
Roukes, M. L. .
NATURE NANOTECHNOLOGY, 2008, 3 (06) :342-346