Investigating Heavy-Ion Effects on 14-nm Process FinFETs: Displacement Damage Versus Total Ionizing Dose

被引:16
作者
Esposito, Madeline G. [1 ]
Manuel, Jack E. [1 ]
Privat, Aymeric [2 ]
Xiao, T. Patrick [1 ]
Garland, Diana [2 ]
Bielejec, Edward [1 ]
Vizkelethy, Gyorgy [1 ]
Dickerson, Jeramy [1 ]
Brunhaver, John [2 ]
Talin, A. Alec [1 ]
Ashby, David [1 ]
King, Michael P. [1 ]
Barnaby, Hugh [2 ]
McLain, Michael [1 ]
Marinella, Matthew J. [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87123 USA
[2] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85281 USA
关键词
Ions; FinFETs; Silicon; Ionization; Logic gates; Protons; Degradation; 14-nm bulk FinFET; annealing; cryogenic measurements; device simulation modeling; displacement damage (DD); mobility degradation; Silvaco; technology computer-aided design (TCAD); total ionizing dose (TID); SOI FINFETS; 1/F NOISE; BULK; DEPENDENCE; TEMPERATURE; VARIABILITY; MOSFETS; EDGE;
D O I
10.1109/TNS.2021.3072886
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Bulk 14-nm FinFET technology was irradiated in a heavy-ion environment (42-MeV Si ions) to study the possibility of displacement damage (DD) in scaled technology devices, resulting in drive current degradation with increased cumulative fluence. These devices were also exposed to an electron beam, proton beam, and cobalt-60 source (gamma radiation) to further elucidate the physics of the device response. Annealing measurements show minimal to no "rebound" in the ON-state current back to its initial high value; however, the OFF-state current "rebound" was significant for gamma radiation environments. Low-temperature experiments of the heavy-ion-irradiated devices reveal increased defect concentration as the result for mobility degradation with increased fluence. Furthermore, the subthreshold slope (SS) temperature dependence uncovers a possible mechanism of increased defect bulk traps contributing to tunneling at low temperatures. Simulation work in Silvaco technology computer-aided design (TCAD) suggests that the increased OFF-state current is a total ionizing dose (TID) effect due to oxide traps in the shallow trench isolation (STI). The significant SS elongation and ON-state current degradation could only be produced when bulk traps in the channel were added. Heavy-ion irradiation on bulk 14-nm FinFETs was found to be a combination of TID and DD effects.
引用
收藏
页码:724 / 732
页数:9
相关论文
共 5 条
  • [1] Total Ionizing Dose Responses of 22-nm FDSOI and 14-nm Bulk FinFET Charge-Trap Transistors
    Brewer, Rachel M.
    Zhang, En Xia
    Gorchichko, Mariia
    Wang, Peng Fei
    Cox, Jonathan
    Moran, Steven L.
    Ball, Dennis R.
    Sierawski, Brian D.
    Fleetwood, Daniel M.
    Schrimpf, Ronald D.
    Iyer, Subramanian S.
    Alles, Michael L.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2021, 68 (05) : 677 - 686
  • [2] Comparison of Total Ionizing Dose Effects in 16-nm Core and I/O n-FinFETs
    Wu, Haowen
    Cui, Jiangwei
    Li, Yudong
    Guo, Qi
    Zheng, Qiwen
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2024, 71 (02) : 167 - 175
  • [3] Total Ionizing Dose Versus Displacement Damage Dose Induced Dark Current Random Telegraph Signals in CMOS Image Sensors
    Virmontois, Cedric
    Goiffon, V.
    Magnan, P.
    Saint-Pe, O.
    Girard, S.
    Petit, S.
    Rolland, G.
    Bardoux, A.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2011, 58 (06) : 3085 - 3094
  • [4] Total-Ionizing-Dose Effects and Low-Frequency Noise in 30-nm Gate-Length Bulk and SOI FinFETs With SiO2/HfO2 Gate Dielectrics
    Gorchichko, Mariia
    Cao, Yanrong
    Zhang, En Xia
    Yan, Dawei
    Gong, Huiqi
    Zhao, Simeng E.
    Wang, Pan
    Jiang, Rong
    Liang, Chundong
    Fleetwood, Daniel M.
    Schrimpf, Ronald D.
    Reed, Robert A.
    Linten, Dimitri
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2020, 67 (01) : 245 - 252
  • [5] Effects of Total-Ionizing-Dose Irradiation on Single-Event Response for Flip-Flop Designs at a 14-/16-nm Bulk FinFET Technology Node
    Zhang, H.
    Jiang, H.
    Fan, X.
    Kauppila, J. S.
    Chatterjee, I.
    Bhuva, B. L.
    Massengill, L. W.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2018, 65 (08) : 1928 - 1934