Measuring and upscaling micromechanical interactions in a cohesive granular material

被引:3
作者
Hemmerle, Arnaud [1 ,2 ]
Yamaguchi, Yuta [3 ,4 ,5 ]
Makowski, Marcin [1 ]
Baumchen, Oliver [1 ,6 ]
Goehring, Lucas [3 ]
机构
[1] Max Planck Inst Dynam & Selforg, Fassberg 17, D-37077 Gottingen, Germany
[2] Orme Merisiers, Synchrotron SOLEIL, BP 48, F-91192 Gif Sur Yvette, France
[3] Nottingham Trent Univ, Sch Sci & Technol, Clifton Lane, Nottingham NG11 8NS, England
[4] Univ Tokyo, Dept Earth & Planetary Sci, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan
[5] Osaka Univ, Dept Earth & Space Sci, 1-1 Machikaneyamacho, Toyonaka, Osaka 5600043, Japan
[6] Univ Bayreuth, Expt Phys 5, Univ Str 30, D-95447 Bayreuth, Germany
关键词
FRACTURE;
D O I
10.1039/d1sm00458a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The mechanical properties of a disordered heterogeneous medium depend, in general, on a complex interplay between multiple length scales. Connecting local interactions to macroscopic observables, such as stiffness or fracture, is thus challenging in this type of material. Here, we study the properties of a cohesive granular material composed of glass beads held together by soft polymer bridges. We characterise the mechanical response of single bridges under traction and shear, using a setup based on the deflection of flexible micropipettes. These measurements, along with information from X-ray microtomograms of the granular packings, then inform large-scale discrete element model (DEM) simulations. Although simple, these simulations are constrained in every way by empirical measurement and accurately predict mechanical responses of the aggregates, including details on their compressive failure, and how the material's stiffness depends on the stiffness and geometry of its parts. By demonstrating how to accurately relate microscopic information to macroscopic properties, these results provide new perspectives for predicting the behaviour of complex disordered materials, such as porous rock, snow, or foam.
引用
收藏
页码:5806 / 5814
页数:9
相关论文
共 34 条
[1]   Spontaneous brittle-to-ductile transition in aqueous foam [J].
Arif, Shehla ;
Tsai, Jih-Chiang ;
Hilgenfeldt, Sascha .
JOURNAL OF RHEOLOGY, 2012, 56 (03) :485-499
[2]   Micropipette force sensors for in vivo force measurements on single cells and multicellular microorganisms [J].
Backholm, Matilda ;
Baeumchen, Oliver .
NATURE PROTOCOLS, 2019, 14 (02) :594-615
[3]   Effects of porosity and crack density on the compressive strength of rocks [J].
Baud, Patrick ;
Wong, Teng-fong ;
Zhu, Wei .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2014, 67 :202-211
[4]   Rigidity percolation control of the brittle-ductile transition in disordered networks [J].
Berthier, Estelle ;
Kollmer, Jonathan E. ;
Henkes, Silke E. ;
Liu, Kuang ;
Schwarz, J. M. ;
Daniels, Karen E. .
PHYSICAL REVIEW MATERIALS, 2019, 3 (07)
[5]   A NOTE ON THE GENERATION OF RANDOM NORMAL DEVIATES [J].
BOX, GEP ;
MULLER, ME .
ANNALS OF MATHEMATICAL STATISTICS, 1958, 29 (02) :610-611
[6]   A contact model for the yielding of caked granular materials [J].
Brendel, L. ;
Toeroek, J. ;
Kirsch, R. ;
Broeckel, U. .
GRANULAR MATTER, 2011, 13 (06) :777-786
[7]   Crack Front Dynamics across a Single Heterogeneity [J].
Chopin, J. ;
Prevost, A. ;
Boudaoud, A. ;
Adda-Bedia, M. .
PHYSICAL REVIEW LETTERS, 2011, 107 (14)
[8]   Structure-property relationships from universal signatures of plasticity in disordered solids [J].
Cubuk, E. D. ;
Ivancic, R. J. S. ;
Schoenholz, S. S. ;
Strickland, D. J. ;
Basu, A. ;
Davidson, Z. S. ;
Fontaine, J. ;
Hor, J. L. ;
Huang, Y. -R. ;
Jiang, Y. ;
Keim, N. C. ;
Koshigan, K. D. ;
Lefever, J. A. ;
Liu, T. ;
Ma, X. -G. ;
Magagnosc, D. J. ;
Morrow, E. ;
Ortiz, C. P. ;
Rieser, J. M. ;
Shavit, A. ;
Still, T. ;
Xu, Y. ;
Zhang, Y. ;
Nordstrom, K. N. ;
Arratia, P. E. ;
Carpick, R. W. ;
Durian, D. J. ;
Fakhraai, Z. ;
Jerolmack, D. J. ;
Lee, Daeyeon ;
Li, Ju ;
Riggleman, R. ;
Turner, K. T. ;
Yodh, A. G. ;
Gianola, D. S. ;
Liu, Andrea J. .
SCIENCE, 2017, 358 (6366) :1033-1037
[9]   Failure of cemented granular materials under simple compression: experiments and numerical simulations [J].
Delenne, J. -Y. ;
Topin, V. ;
Radjai, F. .
ACTA MECHANICA, 2009, 205 (1-4) :9-21
[10]   The role of rigidity in controlling material failure [J].
Driscoll, Michelle M. ;
Chen, Bryan Gin-ge ;
Beuman, Thomas H. ;
Ulrich, Stephan ;
Nagel, Sidney R. ;
Vitelli, Vincenzo .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (39) :10813-10817