Incorporation of supramolecular polymer-functionalized graphene: Towards the development of bio-based high electrically conductive polymeric nanocomposites

被引:18
作者
Cheng, Chih-Chia [1 ]
Liao, Zhi-Sheng [1 ]
Huang, Jyun-Jie [1 ]
Huang, Shan You [1 ]
Fan, Wen-Lu [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Grad Inst Appl Sci & Technol, Taipei 10607, Taiwan
关键词
Nanocomposite; Poly(L-lactic acid); Supramolecular polymer; Functionalized graphene; Ureido-cytosine; CARBON NANOTUBES; BIODEGRADABLE POLYMERS; POLYLACTIDE; GRAPHITE; PLA; CRYSTALLIZATION; COMPOSITES; NETWORKS; BEHAVIOR; BLOCK;
D O I
10.1016/j.compscitech.2017.05.024
中图分类号
TB33 [复合材料];
学科分类号
摘要
Supramolecular polymer-functionalized graphene (SPFG), a combination of exfoliated graphite nano platelets and a low-molecular-weight supramolecular polymer, can be incorporated into poly(L-lactic acid) (PLLA) matrices for efficient production of SPFG/PLLA composites; SPFG behaves as a highly efficient reinforcing material and substantially improves the overall physical properties compared to commercial PLLA. The SPFG content of the PLLA composites can be readily adjusted to obtain the desired composite products with specific crystallization and mechanical characteristics. At the optimized blending ratio of 10 wt% SPFG and 90 wt% PLLA, the resulting film exhibited a 65.2% lower oxygen permeation rate and two-fold higher ultimate tensile strength (47.8 MPa) than pristine PLLA. More excitingly, this newly developed composite possessed superior electrical conductivity of up to 9.58 x 10(-3) S/cm at a SPFG loading of 10.0 wt%, which was nearly four orders of magnitude higher than control graphite/PLLA composites at the same nanofiller content. Thus, SPFG provides a potential route towards the development of high performance graphene-based PLLA nanocomposites for a broad range of electronic and biomedical applications. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:89 / 96
页数:8
相关论文
共 45 条
[1]   Functional Supramolecular Polymers [J].
Aida, T. ;
Meijer, E. W. ;
Stupp, S. I. .
SCIENCE, 2012, 335 (6070) :813-817
[2]   Electromagnetic interference shielding mechanisms of CNT/polymer composites [J].
Al-Saleh, Mohammed H. ;
Sundararaj, Uttandaraman .
CARBON, 2009, 47 (07) :1738-1746
[3]   Stable Aqueous Dispersions of Noncovalently Functionalized Graphene from Graphite and their Multifunctional High-Performance Applications [J].
An, Xiaohong ;
Simmons, Trevor John ;
Shah, Rakesh ;
Wolfe, Christopher ;
Lewis, Kim M. ;
Washington, Morris ;
Nayak, Saroj K. ;
Talapatra, Saikat ;
Kar, Swastik .
NANO LETTERS, 2010, 10 (11) :4295-4301
[4]   Biodegradation and biocompatibility of PLA and PLGA microspheres [J].
Anderson, James M. ;
Shive, Matthew S. .
ADVANCED DRUG DELIVERY REVIEWS, 2012, 64 :72-82
[5]   Non-covalent functionalization of graphene sheets by sulfonated polyaniline [J].
Bai, Hua ;
Xu, Yuxi ;
Zhao, Lu ;
Li, Chun ;
Shi, Gaoquan .
CHEMICAL COMMUNICATIONS, 2009, (13) :1667-1669
[6]   Supra-Molecular EcoBioNanocomposites Based on Polylactide and Cellulosic Nanowhiskers: Synthesis and Properties [J].
Braun, Birgit ;
Dorgan, John R. ;
Hollingsworth, Laura O. .
BIOMACROMOLECULES, 2012, 13 (07) :2013-2019
[7]   Effect of Low Octavinyl-Polyhedral Oligomeric Silsesquioxanes Loading on the Crystallization Kinetics and Morphology of Biodegradable Poly(ethylene succinate-co-5.1 mol % ethylene adipate) as an Efficient Nucleating Agent [J].
Chen, Kai ;
Yu, Jing ;
Qiu, Zhaobin .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (04) :1769-1774
[8]  
Cheng C.C., 2017, POLYM CHEM
[9]   New transparent poly(L-lactide acid) films as high-performance bio-based nanocomposites [J].
Cheng, Chih-Chia ;
Liao, Hao-Wen ;
Chen, Jem-Kun ;
Lee, Duu-Jong ;
Xin, Zhong .
RSC ADVANCES, 2016, 6 (28) :23949-23955
[10]   Functionalized graphene nanomaterials: new insight into direct exfoliation of graphite with supramolecular polymers [J].
Cheng, Chih-Chia ;
Chang, Feng-Chih ;
Wang, Jui-Hsu ;
Chen, Jem-Kun ;
Yen, Ying-Chieh ;
Lee, Duu-Jong .
NANOSCALE, 2016, 8 (02) :723-728