Asymmetric Loss For Multi-Label Classification

被引:326
作者
Ridnik, Tal [1 ]
Ben-Baruch, Emanuel [1 ]
Zamir, Nadav [1 ]
Noy, Asaf [1 ]
Friedman, Itamar [1 ]
Protter, Matan [1 ]
Zelnik-Manor, Lihi [1 ]
机构
[1] Alibaba Grp, DAMO Acad, Hangzhou, Peoples R China
来源
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021) | 2021年
关键词
D O I
10.1109/ICCV48922.2021.00015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In a typical multi-label setting, a picture contains on average few positive labels, and many negative ones. This positive-negative imbalance dominates the optimization process, and can lead to under-emphasizing gradients from positive labels during training, resulting in poor accuracy. In this paper, we introduce a novel asymmetric loss ("ASL"), which operates differently on positive and negative samples. The loss enables to dynamically down-weights and hard-thresholds easy negative samples, while also discarding possibly mislabeled samples. We demonstrate how ASL can balance the probabilities of different samples, and how this balancing is translated to better mAP scores. With ASL, we reach state-of-the-art results on multiple popular multi-label datasets: MS-COCO, Pascal-VOC, NUS-WIDE and Open Images. We also demonstrate ASL applicability for other tasks, such as single-label classification and object detection. ASL is effective, easy to implement, and does not increase the training time or complexity. Implementation is available at: https://github.com/Alibaba-MIIL/ASL.
引用
收藏
页码:82 / 91
页数:10
相关论文
共 39 条
[1]  
[Anonymous], 2014, IEEE INTCONF COMPUT
[2]  
[Anonymous], 2009, ACM INT C IM VID RET
[3]  
Bartlett PL, 2008, J MACH LEARN RES, V9, P1823
[4]  
Cai Han, 2020, P 8 INT C LEARN REPR, P1
[5]   Hybrid Task Cascade for Instance Segmentation [J].
Chen, Kai ;
Pang, Jiangmiao ;
Wang, Jiaqi ;
Xiong, Yu ;
Li, Xiaoxiao ;
Sun, Shuyang ;
Feng, Wansen ;
Liu, Ziwei ;
Shi, Jianping ;
Ouyang, Wanli ;
Loy, Chen Change ;
Lin, Dahua .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4969-4978
[6]   Learning Semantic-Specific Graph Representation for Multi-Label Image Recognition [J].
Chen, Tianshui ;
Xu, Muxin ;
Hui, Xiaolu ;
Wu, Hefeng ;
Lin, Liang .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :522-531
[7]   Multi-Label Image Recognition with Graph Convolutional Networks [J].
Chen, Zhao-Min ;
Wei, Xiu-Shen ;
Wang, Peng ;
Guo, Yanwen .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :5172-5181
[8]   MULTI-LABEL IMAGE RECOGNITION WITH JOINT CLASS-AWARE MAP DISENTANGLING AND LABEL CORRELATION EMBEDDING [J].
Chen, Zhao-Min ;
Wei, Xiu-Shen ;
Jin, Xin ;
Guo, Yanwen .
2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, :622-627
[9]   AutoAugment: Learning Augmentation Strategies from Data [J].
Cubuk, Ekin D. ;
Zoph, Barret ;
Mane, Dandelion ;
Vasudevan, Vijay ;
Le, Quoc V. .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :113-123
[10]   Class-Balanced Loss Based on Effective Number of Samples [J].
Cui, Yin ;
Jia, Menglin ;
Lin, Tsung-Yi ;
Song, Yang ;
Belongie, Serge .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :9260-9269