MULTIVALENT FUNCTIONS INVOLVING SRIVASTAVA-TOMOVSKI GENERALIZATION OF THE MITTAG-LEFFLER FUNCTION DEFINED IN THE NEPHROID DOMAIN

被引:0
作者
Cetinkaya, Asena [1 ]
机构
[1] Istanbul Kultur Univ, Dept Math & Comp Sci, Istanbul, Turkey
来源
COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES | 2021年 / 74卷 / 02期
关键词
Mittag-Leffler function; differential subordination; majorization; Nephroid domain;
D O I
10.7546/CRABS.2021.02.02
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we introduce a new class of multivalent functions defined by generalized Mittag-Leffler function bounded by Nephroid domain. We investigate majorization properties for this class. Moreover, using the technique of Briot-Bouquet differential subordination, we obtain some subordination properties.
引用
收藏
页码:166 / 176
页数:11
相关论文
共 13 条
[1]   Subclasses of p-Valent Functions Involving a New Operator Containing the Generalized Mittag-Leffler Function [J].
Aouf, M. K. ;
Seoudy, T. M. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (04)
[2]  
Duren P.L., 1983, Univalent Functions
[3]  
Gorenflo R., 2020, Mittag-Leffler Functions, Related Topics and Applications, DOI DOI 10.1007/978-3-662-43930-2
[4]   SUBORDINATION BY CONVEX FUNCTIONS [J].
HALLENBECK, DJ ;
RUSCHEWEYH, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 52 (OCT) :191-195
[5]  
Janowski W., 1973, Ann. Pol. Math, V28, P297, DOI [10.4064/ap-28-3-297-326, DOI 10.4064/AP-28-3-297-326]
[6]  
Ma W.C., 1992, P C COMPLEX ANAL C P, P157
[7]   MAJORIZATION BY UNIVALENT FUNCTIONS [J].
MACGREGOR, TH .
DUKE MATHEMATICAL JOURNAL, 1967, 34 (01) :95-+
[8]   UNIVALENT SOLUTIONS OF BRIOT-BOUQUET DIFFERENTIAL-EQUATIONS [J].
MILLER, SS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 56 (03) :297-309
[9]  
Mittag-Leffler G, 1903, CR HEBD ACAD SCI, V137, P554
[10]  
Nehari Z., 1952, Conformal mapping