Electrophoretic and field-effect graphene for all-electrical DNA array technology

被引:112
作者
Xu, Guangyu [1 ]
Abbott, Jeffrey [1 ]
Qin, Ling [1 ]
Yeung, Kitty Y. M. [1 ]
Song, Yi [2 ]
Yoon, Hosang [1 ]
Kong, Jing [2 ]
Ham, Donhee [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
LABEL-FREE DETECTION; EFFECT TRANSISTOR; NANOWIRE NANOSENSORS; NUCLEIC-ACID; HYBRIDIZATION; DEVICES; OLIGONUCLEOTIDE; DEPOSITION; BIOSENSORS; ELECTRODE;
D O I
10.1038/ncomms5866
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Field-effect transistor biomolecular sensors based on low-dimensional nanomaterials boast sensitivity, label-free operation and chip-scale construction. Chemical vapour deposition graphene is especially well suited for multiplexed electronic DNA array applications, since its large two-dimensional morphology readily lends itself to top-down fabrication of transistor arrays. Nonetheless, graphene field-effect transistor DNA sensors have been studied mainly at single-device level. Here we create, from chemical vapour deposition graphene, field-effect transistor arrays with two features representing steps towards multiplexed DNA arrays. First, a robust array yield-seven out of eight transistors-is achieved with a 100-fM sensitivity, on par with optical DNA microarrays and at least 10 times higher than prior chemical vapour deposition graphene transistor DNA sensors. Second, each graphene acts as an electrophoretic electrode for site-specific probe DNA immobilization, and performs subsequent site-specific detection of target DNA as a field-effect transistor. The use of graphene as both electrode and transistor suggests a path towards all-electrical multiplexed graphene DNA arrays.
引用
收藏
页数:9
相关论文
共 46 条
[1]   Hybridization assay at a disposable electrochemical biosensor for the attomole detection of amplified human cytomegalovirus DNA [J].
Azek, F ;
Grossiord, C ;
Joannes, M ;
Limoges, B ;
Brossier, P .
ANALYTICAL BIOCHEMISTRY, 2000, 284 (01) :107-113
[2]   Fully electronic DNA hybridization detection by a standard CMOS biochip [J].
Barbaro, Massimo ;
Bonfiglio, Annalisa ;
Raffo, Luigi ;
Alessandrini, Andrea ;
Facci, Paolo ;
Barak, Imrich .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 118 (1-2) :41-46
[3]  
Bard A. J., 2004, ELECTROCHEMICAL METH, V2nd
[4]   Development of a microfluidic platform with an optical imaging microarray capable of attomolar target DNA detection [J].
Bowden, M ;
Song, LN ;
Walt, DR .
ANALYTICAL CHEMISTRY, 2005, 77 (17) :5583-5588
[5]   Ultrasensitive Label-Free Detection of PNA-DNA Hybridization by Reduced Graphene Oxide Field-Effect Transistor Biosensor [J].
Cai, Bingjie ;
Wang, Shuting ;
Huang, Le ;
Ning, Yong ;
Zhang, Zhiyong ;
Zhang, Guo-Jun .
ACS NANO, 2014, 8 (03) :2632-2638
[6]   Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors [J].
Chen, RJ ;
Bangsaruntip, S ;
Drouvalakis, KA ;
Kam, NWS ;
Shim, M ;
Li, YM ;
Kim, W ;
Utz, PJ ;
Dai, HJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :4984-4989
[7]   Label-free detection of DNA hybridization using transistors based on CVD grown graphene [J].
Chen, Tzu-Yin ;
Phan Thi Kim Loan ;
Hsu, Chang-Lung ;
Lee, Yi-Hsien ;
Wang, Jacob Tse-Wei ;
Wei, Kung-Hwa ;
Lin, Cheng-Te ;
Li, Lain-Jong .
BIOSENSORS & BIOELECTRONICS, 2013, 41 :103-109
[8]   Graphene and Nanowire Transistors for Cellular Interfaces and Electrical Recording [J].
Cohen-Karni, Tzahi ;
Qing, Quan ;
Li, Qiang ;
Fang, Ying ;
Lieber, Charles M. .
NANO LETTERS, 2010, 10 (03) :1098-1102
[9]   Graphene Growth and Device Integration [J].
Colombo, Luigi ;
Wallace, Robert M. ;
Ruoff, Rodney S. .
PROCEEDINGS OF THE IEEE, 2013, 101 (07) :1536-1556
[10]   Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J].
Cui, Y ;
Wei, QQ ;
Park, HK ;
Lieber, CM .
SCIENCE, 2001, 293 (5533) :1289-1292