Preparation of bacteria microarray using selective patterning of polyelectrolyte multilayer and poly(ethylene glycol)-poly(lactide) diblock copolymer

被引:12
作者
Choi, Chang-Hyung [1 ]
Lee, Ji-Hye [1 ]
Hwang, Taek-Sung [1 ]
Lee, Chang-Soo [1 ]
Kim, Yun-Gon [2 ]
Yang, Yung-Hun [3 ]
Huh, Kang Moo [4 ]
机构
[1] Chungnam Natl Univ, Dept Chem Engn, Taejon 305764, South Korea
[2] Harvard Univ, Sch Med, Brigham & Womens Hosp, Dept Med, Cambridge, MA 02139 USA
[3] Konkuk Univ, Dept Microbial Engn, Seoul 143701, South Korea
[4] Chungnam Natl Univ, Dept Polymer Sci & Engn, Taejon 305764, South Korea
基金
新加坡国家研究基金会;
关键词
poly(ethylene glycol)-poly(actide) copolymer (PEG-PLA); polyelectrolyte multilayers (PEL); micromolding in capillaries (MIMIC); bacteria; microarrays; SURFACE; PROTEINS; FABRICATION; ARRAYS; CELLS;
D O I
10.1007/s13233-010-0314-6
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This study reports a simple but efficient method for create bacteria microarrays on a predesigned functional surface consisting of two distinctive regions; a bacterial immobilizing area and a nonimmobilizing region. The functionalized surface was fabricated by a combination of self-assembled polyelectrolyte multilayers (PEL) and micromolding in the capillaries (MIMIC) of poly(ethylene glycol)-poly(d,l-lactide) diblock copolymer (PEGPLA). The PEL region provides bacterial immobilization, and the nonspecific binding of bacteria was prevented using PEG-PLA as passivation molecules. The topological change in the functionalized surface was characterized by atomic force microscopy (AFM), which suggested the occurrence of a laterally homogeneous and well defined surface modification. An analysis of the fluorescence signals from the bacteria microarray indicates that the bacteria are viable and grow after immobilization on patterned surface features. The rapid fabrication of two different functionalities on the surface results in a uniform bacteria pattern with a high signal to noise ratio and shape flexibility, such as lines, squares, and circles. Moreover, the pattern size could be controlled from 20 to 100 mu m.
引用
收藏
页码:254 / 259
页数:6
相关论文
共 24 条
[1]   Preparation of bacteria microarray using selective patterning of polyelectrolyte multilayer and poly(ethylene glycol)-poly(lactide) diblock copolymer [J].
Chang-Hyung Choi ;
Ji-Hye Lee ;
Taek-Sung Hwang ;
Chang-Soo Lee ;
Yun-Gon Kim ;
Yung-Hun Yang ;
Kang Moo Huh .
Macromolecular Research, 2010, 18 :254-259
[2]   Selective Etching of Polylactic Acid in Poly(styrene)-Block-Poly(D,L)Lactide Diblock Copolymer for Nanoscale Patterning [J].
Cummins, Cian ;
Mokarian-Tabari, Parvaneh ;
Holmes, Justin D. ;
Morris, Michael A. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2014, 131 (18) :9493-9504
[3]   Preparation and Characterizations of RSPP050-Loaded Polymeric Micelles Using Poly(ethylene glycol)-b-Poly(ε-caprolactone) and Poly(ethylene glycol)-b-Poly(D,L-lactide) [J].
Eawsakul, Komgrit ;
Chinavinijkul, Panarin ;
Saeeng, Rungnapha ;
Chairoungdua, Arthit ;
Tuchinda, Patoomratana ;
Nasongkla, Norased .
CHEMICAL & PHARMACEUTICAL BULLETIN, 2017, 65 (06) :530-537
[4]   A microfluidic chip with poly(ethylene glycol) hydrogel microarray on nanoporous alumina membrane for cell patterning and drug testing [J].
Liu, Zong-Bin ;
Zhang, Yu ;
Yu, Jin-Jiang ;
Mak, Arthur Fuk-Tat ;
Li, Yi ;
Yang, Mo .
SENSORS AND ACTUATORS B-CHEMICAL, 2010, 143 (02) :776-783
[5]   Preparation of complementary glycosylated hyperbranched polymer/poly(ethylene glycol) brushes and their selective interactions with hepatocytes [J].
Liang, Su ;
Yu, Shan ;
Gao, Changyou .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2016, 145 :309-318
[6]   Preparation, characterization and anticancer activity of norcantharidin-loaded poly(ethylene glycol)-poly(caprolactone) amphiphilic block copolymer micelles [J].
Chen, Shui-Fang ;
Lu, Wen-Fen ;
Wen, Zhi-Yong ;
Li, Qiang ;
Chen, Jian-Hai .
PHARMAZIE, 2012, 67 (09) :781-788
[7]   Design of Poly(L-lactide)-Poly(ethylene glycol) Copolymer with Light-Induced Shape-Memory Effect Triggered by Pendant Anthracene Groups [J].
Xie, Hui ;
He, Man-jie ;
Deng, Xiao-Ying ;
Du, Lan ;
Fan, Cheng-Jie ;
Yang, Ke-Ke ;
Wang, Yu-Zhong .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (14) :9431-9439
[8]   In vivo efficacy of an intratumorally injected in situ-forming doxorubicin/poly(ethylene glycol)-b-polycaprolactone diblock copolymer [J].
Kang, Yun Mi ;
Kim, Gyeong Hae ;
Kim, Jae Il ;
Kim, Da Yeon ;
Lee, Bit Na ;
Yoon, So Mi ;
Kim, Jae Ho ;
Kim, Moon Suk .
BIOMATERIALS, 2011, 32 (20) :4556-4564
[9]   Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins [J].
Seck, Tetsu M. ;
Melchels, Ferry P. W. ;
Feijen, Jan ;
Grijpma, Dirk W. .
JOURNAL OF CONTROLLED RELEASE, 2010, 148 (01) :34-41
[10]   Delivery of messenger RNA using poly(ethylene imine)-poly(ethylene glycol)-copolymer blends for polyplex formation: Biophysical characterization and in vitro transfection properties [J].
Debus, Heiko ;
Baumhof, Patrick ;
Probst, Jochen ;
Kissel, Thomas .
JOURNAL OF CONTROLLED RELEASE, 2010, 148 (03) :334-343