Toward high-dimensional-state quantum memory in a cold atomic ensemble

被引:27
作者
Ding, Dong-Sheng [1 ,2 ]
Zhang, Wei [1 ,2 ]
Zhou, Zhi-Yuan [1 ,2 ]
Shi, Shuai [1 ,2 ]
Pan, Jian-song [1 ,2 ]
Xiang, Guo-Yong [1 ,2 ]
Wang, Xi-Shi [3 ]
Jiang, Yun-Kun [4 ]
Shi, Bao-Sen [1 ,2 ]
Guo, Guang-Can [1 ,2 ]
机构
[1] Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China
[4] Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350002, Peoples R China
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 04期
基金
中国国家自然科学基金;
关键词
ENTANGLEMENT; IMAGES;
D O I
10.1103/PhysRevA.90.042301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum memories have been realized in different physical systems, such as atomic ensembles or solid systems. To date, all quantum memories have realized the storage and retrieval of photons encoded using only a two-dimensional space spanned, for example, by the orthogonal polarization states, and hence can only store a quantum bit. Using electromagnetically induced transparency in a cold atomic ensemble, we report the experimental realization of a quantum memory storing a photon encoded in a three-dimensional space spanned by orbital angular momentum (OAM) states. We experimentally reconstruct the storage process density matrix with a fidelity of 85.3% +/- 1.8% using a 4-f imaging system. We also realize storage of two special photonic qutrit states as examples. Toward storing a higher-dimensional state encoded in OAM space, the efficiency difference between different OAM states should be considered according to the experimental results. The capability to store high-dimensional quantum states with high fidelity is a key step towards building high-dimensional quantum networks.
引用
收藏
页数:5
相关论文
共 30 条
[1]   Quantum cryptography using larger alphabets [J].
Bechmann-Pasquinucci, H ;
Tittel, W .
PHYSICAL REVIEW A, 2000, 61 (06) :6
[2]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[3]  
Chuang IL, 1997, J MOD OPTIC, V44, P2455, DOI 10.1080/095003497152609
[4]   Multiplexed memory-insensitive quantum repeaters [J].
Collins, O. A. ;
Jenkins, S. D. ;
Kuzmich, A. ;
Kennedy, T. A. B. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[5]  
Dada AC, 2011, NAT PHYS, V7, P677, DOI [10.1038/nphys1996, 10.1038/NPHYS1996]
[6]  
De Riedmatten H, 2002, QUANTUM INFORM COMPU, V2, P425
[7]   Single-photon-level quantum image memory based on cold atomic ensembles [J].
Ding, Dong-Sheng ;
Zhou, Zhi-Yuan ;
Shi, Bao-Sen ;
Guo, Guang-Can .
NATURE COMMUNICATIONS, 2013, 4
[8]   Multiple image storage and frequency conversion in a cold atomic ensemble [J].
Ding, Dong-Sheng ;
Wu, Jing-Hui ;
Zhou, Zhi-Yuan ;
Shi, Bao-Sen ;
Zou, Xu-Bo ;
Guo, Guang-Can .
PHYSICAL REVIEW A, 2013, 87 (05)
[9]   Quantum Entanglement of High Angular Momenta [J].
Fickler, Robert ;
Lapkiewicz, Radek ;
Plick, William N. ;
Krenn, Mario ;
Schaeff, Christoph ;
Ramelow, Sven ;
Zeilinger, Anton .
SCIENCE, 2012, 338 (6107) :640-643
[10]   Temporally multiplexed storage of images in a gradient echo memory [J].
Glorieux, Quentin ;
Clark, Jeremy B. ;
Marino, Alberto M. ;
Zhou, Zhifan ;
Lett, Paul D. .
OPTICS EXPRESS, 2012, 20 (11) :12350-12358