First-order interval type-1 non-singleton type-2 TSK fuzzy logic systems

被引:0
|
作者
Mendez, Gerardo M. [1 ]
Adolfo Leduc, Luis [2 ]
机构
[1] Inst Tecnol Nuevo Leon, Dept Elect & Electromech Engn, Eloy Cavazos 2001, Guadalupe 67170, NL, Mexico
[2] SA CV, Dept Process Engn Hylsa, Monterrey 67170, NL, Mexico
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents the implementation of first-order interval type-1 non-singleton type-2 TSK fuzzy logic system (FLS). Using input-output data pairs during the forward pass of the training process, the interval type-1 non-singleton type-2 TSK FLS output is calculated and the consequent parameters are estimated by back-propagation (BP) method. In the backward pass, the error propagates backward, and the antecedent parameters are estimated also by back-propagation. The proposed interval type-1 non-singleton type-2 TSK FLS system was used to construct a fuzzy model capable of approximating the behaviour of the steel strip temperature as it is being rolled in an industrial Hot Strip Mill (HSM) and used to predict the transfer bar surface temperature at finishing Scale Breaker (SB) entry zone, being able to compensate for uncertain measurements that first-order interval singleton type-2 TSK FLS can not do.
引用
收藏
页码:81 / +
页数:2
相关论文
共 50 条
  • [41] JuzzyPy - A Python']Python Library to Create Type-1, Interval Type-2 and General Type-2 Fuzzy Logic Systems
    Ahmad, Mohammad Sameer
    Wagner, Christian
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 735 - 742
  • [42] Performance Comparison of Type-1 and Type-2 Fuzzy Logic Systems
    Naik, K. A.
    Gupta, C. P.
    PROCEEDINGS OF 4TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMPUTING AND CONTROL (ISPCC 2K17), 2017, : 72 - 76
  • [43] Interval type-2 fuzzy logic systems
    Liang, QL
    Mendel, JM
    NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 328 - 333
  • [44] Type-1 or Interval Type-2 Fuzzy Logic Systems - On the Relationship of the Amount of Uncertainty and FOU Size
    Aladi, Jabran Hussain
    Wagner, Christian
    Garibaldi, Jonathan M.
    2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 2360 - 2367
  • [45] ON THE CONTROL OF TUMOR GROWTH VIA TYPE-1 AND INTERVAL TYPE-2 FUZZY LOGIC
    Gholami, Shahrzad
    Alasty, Aria
    Salarieh, Hassan
    Hosseinian-Sarajehlou, Mehdi
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2015, 15 (05)
  • [46] On the Fundamental Differences Between Interval Type-2 and Type-1 Fuzzy Logic Controllers
    Wu, Dongrui
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2012, 20 (05) : 832 - 848
  • [47] Adaptive Non-singleton Type-2 Fuzzy Logic Systems: A Way Forward for Handling Numerical Uncertainties in Real World Applications
    Sahab, N.
    Hagras, H.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2011, 6 (03) : 503 - 529
  • [48] Development of an Interval Type-2 TSK Fuzzy Logic Attitude Controller for a UAV
    Hailemichael, Abel
    Behniapoor, Mohammadreza
    Karimoddini, Ali
    2018 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS), 2018, : 1003 - 1009
  • [49] Developing a computationally effective Interval Type-2 TSK Fuzzy Logic Controller
    Hailemichael, Abel
    Salaken, Syed Moshfeq
    Karimoddini, Ali
    Homaifar, Abdollah
    Khosravi, Abbas
    Nahavandi, Saeid
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (02) : 1915 - 1928
  • [50] Towards Comparing Adaptive Type-2 Input Based Non-Singleton Type-2 FLS and Non-Singleton FLSs Employing Gaussian Inputs
    Sahab, Nazanin
    Hagras, Hani
    2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,