On-line creep-fatigue monitoring system for components at elevated temperature

被引:0
|
作者
Mukhopadhyay, NK [1 ]
Dutta, BK [1 ]
Kushwaha, HS [1 ]
机构
[1] Bhabha Atom Res Ctr, Reactor Safety Div, Bombay 400085, Maharashtra, India
来源
TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS | 2000年 / 53卷 / 03期
关键词
creep; fatigue; creep-fatigue monitoring system; on-line; finite element method; rainflow cycle counting algorithm; damage index; life extension program;
D O I
暂无
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
A system has been developed for on-line monitoring of various aging effects e.g. creep, fatigue and creep fatigue interaction. The earlier developed fatigue monitoring system has been modified to account for creep damage and creep-fatigue interaction. The present system is based on the finite element method. The system can take care of the fluctuations of the process fluid temperature, pressure and flow rate. This can also account for the system induced loads such as axial forces and bending moments. The system converts the plant transients to temperature/ stress responses using the finite element method. This computes the fatigue usage factor using rainflow cycle counting algorithm. The creep damage index is evaluated from the computed temperature and stress histories and the material creep curve. To account for the combined damage mechanism, the damage accumulation approach is adapted. This system is capable of analysing several components of a plant using a P.C. This system will be helpful in life estimation and life extension program of thermal power plants, nuclear power plants, chemical process industries, etc.
引用
收藏
页码:411 / 419
页数:9
相关论文
共 50 条
  • [1] On-line fatigue-creep monitoring system for high-temperature components of power plants
    Mukhopadhyay, NK
    Dutta, BK
    Kushwaha, HS
    INTERNATIONAL JOURNAL OF FATIGUE, 2001, 23 (06) : 549 - 560
  • [2] Notch Effect on Structural Strength of Components at Elevated Temperature Under Creep, Fatigue, and Creep-Fatigue Loading Conditions: Phenomenon and Mechanism
    Gong, Jian-Guo
    Gong, Cheng
    Xuan, Fu-Zhen
    Chen, Haofeng
    JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 2019, 141 (05):
  • [3] On Creep Fatigue Interaction of Components at Elevated Temperature
    Barbera, Daniele
    Chen, Haofeng
    Liu, Yinghua
    JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 2016, 138 (04):
  • [4] Life Prediction of Two Rotor Steels under Creep-Fatigue Interaction at Elevated Temperature
    Xu, Hong
    Zhang, Wei-wei
    Maile, Karl
    MECHANICAL ENGINEERING, MATERIALS SCIENCE AND CIVIL ENGINEERING II, 2014, 470 : 581 - +
  • [5] PROCEDURES FOR MULTIAXIAL CREEP-FATIGUE VERIFICATIONS OF NUCLEAR COMPONENTS
    Dalla Palma, Mauro
    Zaccaria, Pierluigi
    FUSION SCIENCE AND TECHNOLOGY, 2012, 62 (01) : 122 - 128
  • [6] A strain energy density method for the prediction of creep-fatigue damage in high temperature components
    Payten, Warwick M.
    Dean, David W.
    Snowden, Ken U.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (7-8): : 1920 - 1925
  • [7] Advanced constitutive modelling for creep-fatigue assessment of high temperature components
    Hosseini, Ehsan
    Holdsworth, Stuart
    Mazza, Edoardo
    MATERIALS AT HIGH TEMPERATURES, 2018, 35 (06) : 504 - 512
  • [8] A deep learning based life prediction method for components under creep, fatigue and creep-fatigue conditions
    Zhang, Xiao-Cheng
    Gong, Jian-Guo
    Xuan, Fu-Zhen
    INTERNATIONAL JOURNAL OF FATIGUE, 2021, 148
  • [9] High temperature creep, fatigue and creep-fatigue interaction in engineering materials
    Yokobori, T
    Yokobori, AT
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2001, 78 (11-12) : 903 - 908
  • [10] Development of flaw evaluation system for creep-fatigue crack propagation of high-temperature
    Fujishita, K
    Miura, N
    Takahashi, Y
    Nakayama, Y
    ADVANCES IN FRACTURE AND FAILURE PREVENTION, PTS 1 AND 2, 2004, 261-263 : 1307 - 1312