Monotone mixed variational inequalities

被引:4
作者
Noor, MA [1 ]
机构
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada
关键词
variational inequalities; splitting methods; resolvent operator; fixed point; convergence;
D O I
10.1016/S0893-9659(00)00141-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider and analyze some new splitting methods for solving quasi-monotone mixed variational inequalities by using the technique of updating the solution. The modified methods converge for quasi-monotone continuous operators. The new splitting methods differ from the existing splitting methods. Proof of convergence is very simple. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:231 / 236
页数:6
相关论文
共 22 条
[1]  
Ames W. F., 1992, NUMERICAL METHODS PA
[2]  
Baiocchi C., 1984, Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems
[3]  
BREZIS H., 1973, North-Holland Math. Stud., V5
[4]  
Cottle R.W., 1980, Variational Inequalities and Complementarity Problems: Theory and Applications
[5]  
Giannessi F., 1995, Variational Inequalities and Network Equilibrium Problems
[6]  
GLOWINSKI R., 1989, AUGMENTED LAGRANGIAN
[7]  
Kikuchi N., 1988, CONTACT PROBLEMS ELA
[8]   SPLITTING ALGORITHMS FOR THE SUM OF 2 NON-LINEAR OPERATORS [J].
LIONS, PL ;
MERCIER, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (06) :964-979
[9]  
Martinet B., 1972, REV FRANCAISE DAUTO, V4, P154
[10]  
Noor M.A., 1998, ADV NONLINEAR VAR IN, V1, P51