Monotone mixed variational inequalities

被引:4
作者
Noor, MA [1 ]
机构
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada
关键词
variational inequalities; splitting methods; resolvent operator; fixed point; convergence;
D O I
10.1016/S0893-9659(00)00141-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider and analyze some new splitting methods for solving quasi-monotone mixed variational inequalities by using the technique of updating the solution. The modified methods converge for quasi-monotone continuous operators. The new splitting methods differ from the existing splitting methods. Proof of convergence is very simple. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:231 / 236
页数:6
相关论文
共 22 条
  • [1] Ames W. F., 1992, NUMERICAL METHODS PA
  • [2] Baiocchi C., 1984, Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems
  • [3] BREZIS H., 1973, North-Holland Math. Stud., V5
  • [4] Cottle R.W., 1980, Variational Inequalities and Complementarity Problems: Theory and Applications
  • [5] Giannessi F., 1995, Variational Inequalities and Network Equilibrium Problems
  • [6] GLOWINSKI R., 1989, AUGMENTED LAGRANGIAN
  • [7] Kikuchi N., 1988, CONTACT PROBLEMS ELA
  • [8] SPLITTING ALGORITHMS FOR THE SUM OF 2 NON-LINEAR OPERATORS
    LIONS, PL
    MERCIER, B
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (06) : 964 - 979
  • [9] Martinet B., 1972, REV FRANCAISE DAUTO, V4, P154
  • [10] Noor M.A., 1998, ADV NONLINEAR VAR IN, V1, P51