Hamiltonian approach to Ehrenfest expectation values and Gaussian quantum states

被引:9
作者
Bonet-Luz, Esther [1 ]
Tronci, Cesare [1 ]
机构
[1] Univ Surrey, Dept Math, Guildford GU2 7XH, Surrey, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2016年 / 472卷 / 2189期
基金
英国工程与自然科学研究理事会;
关键词
Ehrenfest theorem; Gaussian state; Wigner-Moyal formulation; DYNAMICS; MECHANICS; INVARIANTS; EQUATIONS;
D O I
10.1098/rspa.2015.0777
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The dynamics of quantum expectation values is considered in a geometric setting. First, expectation values of the canonical observables are shown to be equivariant momentum maps for the action of the Heisenberg group on quantum states. Then, the Hamiltonian structure of Ehrenfest's theorem is shown to be Lie-Poisson for a semidirectproduct Lie group, named the Ehrenfest group. The underlying Poisson structure produces classical and quantum mechanics as special limit cases. In addition, quantum dynamics is expressed in the frame of the expectation values, in which the latter undergo canonical Hamiltonian motion. In the case of Gaussian states, expectation values dynamics couples to second-order moments, which also enjoy a momentum map structure. Eventually, Gaussian states are shown to possess a Lie-Poisson structure associated with another semidirect-product group, which is called the Jacobi group. This structure produces the energy-conserving variant of a class of Gaussian moment models that have previously appeared in the chemical physics literature.
引用
收藏
页数:15
相关论文
共 50 条
[1]   Continuous Variable Quantum Information: Gaussian States and Beyond [J].
Adesso, Gerardo ;
Ragy, Sammy ;
Lee, Antony R. .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2014, 21 (1-2)
[2]   THE STATISTICAL DYNAMICS OF A SYSTEM CONSISTING OF A CLASSICAL AND A QUANTUM SUBSYSTEM [J].
ALEKSANDROV, IV .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1981, 36 (08) :902-908
[3]   QUANTUM BACKREACTION ON CLASSICAL VARIABLES [J].
ANDERSON, A .
PHYSICAL REVIEW LETTERS, 1995, 74 (05) :621-625
[4]  
[Anonymous], 2011, LECT NOTES PHYS
[5]   INADEQUACY OF EHRENFEST THEOREM TO CHARACTERIZE THE CLASSICAL REGIME [J].
BALLENTINE, LE ;
YANG, YM ;
ZIBIN, JP .
PHYSICAL REVIEW A, 1994, 50 (04) :2854-2859
[6]   Dynamics of quantum-classical differences for chaotic systems [J].
Ballentine, LE .
PHYSICAL REVIEW A, 2002, 65 (06) :6
[7]   The Jacobi Group and the Squeezed States - Some Comments [J].
Berceanu, S. .
GEOMETRIC METHODS IN PHYSICS, 2009, 1191 :21-29
[8]  
Berceanu S, 2007, J GEOM SYMMETRY PHYS, V9, P1
[9]   QUANTUM-MECHANICS AS A GENERALIZATION OF NAMBU DYNAMICS TO THE WEYL-WIGNER FORMALISM [J].
BIALYNICKIBIRULA, I ;
MORRISON, PJ .
PHYSICS LETTERS A, 1991, 158 (09) :453-457
[10]   Effective equations of motion for quantum systems [J].
Bojowald, Martin ;
Skirzewski, Aureliano .
REVIEWS IN MATHEMATICAL PHYSICS, 2006, 18 (07) :713-745