Titanium dioxide nanoparticle ingestion alters nutrient absorption in an in vitro model of the small intestine

被引:122
作者
Guo, Zhongyuan [1 ]
Martucci, Nicole J. [1 ]
Moreno-Olivas, Fabiola [1 ]
Tako, Elad [2 ]
Mahler, Gretchen J. [1 ]
机构
[1] SUNY Binghamton, Dept Biomed Engn, 2608 Biotechnol Bldg, Binghamton, NY 13902 USA
[2] ARS, Plant Soil & Nutr Lab, USDA, Ithaca, NY USA
基金
美国国家卫生研究院;
关键词
TiO2; Nanoparticles; Ingestion; Small intestine; Nutrient absorption; TIGHT JUNCTION PERMEABILITY; ALKALINE-PHOSPHATASE; TIO2; NANOPARTICLES; IRON TRANSPORT; ENGINEERED NANOMATERIALS; MOLECULAR-MECHANISM; CACO-2; MONOLAYERS; ZINC TRANSPORTERS; OXIDATIVE STRESS; EPITHELIAL-CELLS;
D O I
10.1016/j.impact.2017.01.002
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ingestion of titanium dioxide (TiO2) nanoparticles from products such as agricultural chemicals, processed food, and nutritional supplements is nearly unavoidable. The gastrointestinal tract serves as a critical interface between the body and the external environment, and is the site of essential nutrient absorption. The goal of this study was to examine the effects of ingesting the 30 nm TiO2 nanoparticles with an in vitro cell culture model of the small intestinal epithelium, and to determine how acute or chronic exposure to nano-TiO2 influences intestinal barrier function, reactive oxygen species generation, proinflammatory signaling, nutrient absorption (iron, zinc, fatty acids), and brush border membrane enzyme function (intestinal alkaline phosphatase). A Caco-2/HT29-MTX cell culture model was exposed to physiologically relevant doses of TiO2 nanoparticles for acute (4 h) or chronic (five days) time periods. Exposure to TiO2 nanoparticles significantly decreased intestinal barrier function following chronic exposure. Reactive oxygen species (ROS) generation, proinflammatory signaling, and intestinal alkaline phosphatase activity all showed increases in response to nano-TiO2. Iron, zinc, and fatty acid transport were significantly decreased following exposure to TiO2 nanoparticles. This is because nanoparticle exposure induced a decrease in absorptive microvilli in the intestinal epithelial cells. Nutrient transporter protein gene expression was also altered, suggesting that cells are working to regulate the transport mechanisms disturbed by nanoparticle ingestion. Overall, these results show that intestinal epithelial cells are affected at a functional level by physiologically relevant exposure to nanoparticles commonly ingested from food. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:70 / 82
页数:13
相关论文
共 91 条
[1]   CACO-2 CELL-LINE - A SYSTEM FOR STUDYING INTESTINAL IRON TRANSPORT ACROSS EPITHELIAL-CELL MONOLAYERS [J].
ALVAREZHERNANDEZ, X ;
NICHOLS, GM ;
GLASS, J .
BIOCHIMICA ET BIOPHYSICA ACTA, 1991, 1070 (01) :205-208
[2]   Long-term exposure of A549 cells to titanium dioxide nanoparticles induces DNA damage and sensitizes cells towards genotoxic agents [J].
Armand, Lucie ;
Tarantini, Adeline ;
Beal, David ;
Biola-Clier, Mathilde ;
Bobyk, Laure ;
Sorieul, Sephanie ;
Pernet-Gallay, Karin ;
Marie-Desvergne, Caroline ;
Lynch, Iseult ;
Herlin-Boime, Nathalie ;
Carriere, Marie .
NANOTOXICOLOGY, 2016, 10 (07) :913-923
[3]   Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage [J].
Arosio, Paolo ;
Levi, Sonia .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2010, 1800 (08) :783-792
[4]   CORRELATION BETWEEN ORAL-DRUG ABSORPTION IN HUMANS AND APPARENT DRUG PERMEABILITY COEFFICIENTS IN HUMAN INTESTINAL EPITHELIAL (CACO-2) CELLS [J].
ARTURSSON, P ;
KARLSSON, J .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1991, 175 (03) :880-885
[5]   Caco-2 monolayers in experimental and theoretical predictions of drug transport (Reprinted from Advanced Drug Delivery Reviews, vol 22, pg 67-84, 1996) [J].
Artursson, P ;
Palm, K ;
Luthman, K .
ADVANCED DRUG DELIVERY REVIEWS, 2001, 46 (1-3) :27-43
[6]   The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo [J].
Atuma, C ;
Strugala, V ;
Allen, A ;
Holm, L .
AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2001, 280 (05) :G922-G929
[7]   Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective [J].
Auffan, Melanie ;
Rose, Jerome ;
Bottero, Jean-Yves ;
Lowry, Gregory V. ;
Jolivet, Jean-Pierre ;
Wiesner, Mark R. .
NATURE NANOTECHNOLOGY, 2009, 4 (10) :634-641
[8]   Optimized dispersion of nanoparticles for biological in vitro and in vivo studies [J].
Bihari, Peter ;
Vippola, Minnamari ;
Schultes, Stephan ;
Praetner, Marc ;
Khandoga, Alexander G. ;
Reichel, Christoph A. ;
Coester, Conrad ;
Tuomi, Timo ;
Rehberg, Markus ;
Krombach, Fritz .
PARTICLE AND FIBRE TOXICOLOGY, 2008, 5 (1)
[9]   Restoration of barrier function in injured intestinal mucosa [J].
Blikslager, Anthony T. ;
Moeser, Adam J. ;
Gookin, Jody L. ;
Jones, Samuel L. ;
Odle, Jack .
PHYSIOLOGICAL REVIEWS, 2007, 87 (02) :545-564
[10]   Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia [J].
Brun, Emilie ;
Barreau, Frederick ;
Veronesi, Giulia ;
Fayard, Barbara ;
Sorieul, Stephanie ;
Chaneac, Corinne ;
Carapito, Christine ;
Rabilloud, Thierry ;
Mabondzo, Aloise ;
Herlin-Boime, Nathalie ;
Carriere, Marie .
PARTICLE AND FIBRE TOXICOLOGY, 2014, 11