Approximation with Riemann-Liouville fractional derivatives

被引:0
|
作者
Anastassiou, George A. [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2019年 / 64卷 / 03期
关键词
Riemann-Liouville fractional derivative; positive sublinear operators; modulus of continuity; comonotonic operator; Choquet integral;
D O I
10.24193/subbmath.2019.3.07
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we study quantitatively with rates the pointwise convergence of a sequence of positive sublinear operators to the unit operator over continuous functions. This takes place under low order smothness, less than one, of the approximated function and it is expressed via the left and right Riemann-Liouville fractional derivatives of it. The derived related inequalities in their right hand sides contain the moduli of continuity of these fractional derivatives and they are of Shisha-Mond type. We give applications to Bernstein Max-product operators and to positive sublinear comonotonic operators connecting them to Choquet integral.
引用
收藏
页码:357 / 365
页数:9
相关论文
共 50 条
  • [1] Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives
    Li Kexue
    Peng Jigen
    Jia Junxiong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (02) : 476 - 510
  • [2] The general solution of impulsive systems with Riemann-Liouville fractional derivatives
    Zhang, Xianmin
    Ding, Wenbin
    Peng, Hui
    Liu, Zuohua
    Shu, Tong
    OPEN MATHEMATICS, 2016, 14 : 1125 - 1137
  • [3] A MULTIPLE OPIAL TYPE INEQUALITY FOR THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES
    Andric, M.
    Pecaric, J.
    Peric, I.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (01): : 139 - 150
  • [4] Approximation by Riemann-Liouville type fractional α -Bernstein-Kantorovich operators
    Berwal, Sahil
    Mohiuddine, S. A.
    Kajla, Arun
    Alotaibi, Abdullah
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (11) : 8275 - 8288
  • [5] Solvability of BVPs for impulsive fractional differential equations involving the Riemann-Liouville fractional derivatives
    Liu, Yuji
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2018, 63 (01): : 79 - 108
  • [6] RIEMANN-LIOUVILLE FRACTIONAL FUNDAMENTAL THEOREM OF CALCULUS AND RIEMANN-LIOUVILLE FRACTIONAL POLYA TYPE INTEGRAL INEQUALITY AND ITS EXTENSION TO CHOQUET INTEGRAL SETTING
    Anastassiou, George A.
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (06) : 1423 - 1433
  • [7] A NOTE ON RIEMANN-LIOUVILLE FRACTIONAL SOBOLEV SPACES
    Carbotti, Alessandro
    Comi, Giovanni E.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (01) : 17 - 54
  • [8] On a terminal value problem for pseudoparabolic equations involving Riemann-Liouville fractional derivatives
    Tran Bao Ngoc
    Zhou, Yong
    O'Regan, Donal
    Nguyen Huy Tuan
    APPLIED MATHEMATICS LETTERS, 2020, 106
  • [9] Complex Powers of Fractional Sectorial Operators and Quasilinear Equations with Riemann-Liouville Derivatives
    Fedorov, V. E.
    Avilovich, A. S.
    Zakharova, T. A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (02) : 580 - 593
  • [10] Noether's theorems of a fractional Birkhoffian system within Riemann-Liouville derivatives
    Yan, Zhou
    Yi, Zhang
    CHINESE PHYSICS B, 2014, 23 (12)