LOWER BOUND ON THE NUMBER OF HAMILTONIAN CYCLES OF GENERALIZED PETERSEN GRAPHS

被引:1
|
作者
Lu, Weihua [1 ]
Yang, Chao [2 ]
Ren, Han [3 ,4 ]
机构
[1] Shanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R China
[2] Shanghai Univ Engn Sci, Sch Math Phys & Stat, Shanghai 201620, Peoples R China
[3] East China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
[4] Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
关键词
generalized Petersen graph; Hamiltonian cycle; partition number; 1-factor;
D O I
10.7151/dmgt.2141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the number of Hamiltonian cycles of a generalized Petersen graph P(N, k) and prove that psi(P(N, 3) >= N center dot alpha(N) where psi(P(N, 3)) is the number of Hamiltonian cycles of P(N, 3) and alpha(N) satisfies that for any epsilon > 0, there exists a positive integer M such that when N > M, ((1-epsilon)(1-r(3))/6r(3)+5r(2)+3)(1/r)(N+2) < alpha N < ((1+epsilon)(1-r(3))/6r(3)+5r(2)+3)(1/r)(N+2), where 1/r = max {vertical bar 1/r (j)vertical bar j = 1, 2,..., 6} and each r(j) is a root of equation x(6) + x(5) + x(3) - 1 = 0, r approximate to 0.782. This shows that psi(P(N, 3) is exponential in N and also deduces that the number of 1-factors of P(N, 3) is exponential in N.
引用
收藏
页码:297 / 305
页数:9
相关论文
共 50 条
  • [41] Embedding of circulant graphs and generalized Petersen graphs on projective plane
    Yang, Yan
    Liu, Yanpei
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (01) : 209 - 220
  • [42] ALL GENERALIZED PETERSEN GRAPHS ARE UNIT-DISTANCE GRAPHS
    Zitnik, Arjana
    Horvat, Boris
    Pisanski, Tomaz
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (03) : 475 - 491
  • [43] ON THE STAR CHROMATIC INDEX OF GENERALIZED PETERSEN GRAPHS
    Zhu, Enqiang
    Shao, Zehui
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (02) : 427 - 439
  • [44] On Distance-Balanced Generalized Petersen Graphs
    Gang Ma
    Jianfeng Wang
    Sandi Klavžar
    Annals of Combinatorics, 2024, 28 : 329 - 349
  • [45] Injective edge coloring of generalized Petersen graphs
    Li, Yanyi
    Chen, Lily
    AIMS MATHEMATICS, 2021, 6 (08): : 7929 - 7943
  • [46] Double Roman Domination in Generalized Petersen Graphs
    Gao, Hong
    Huang, Jiahuan
    Yang, Yuansheng
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (03) : 885 - 894
  • [47] Matching book thickness of generalized Petersen graphs
    Shao, Zeling
    Geng, Huiru
    Li, Zhiguo
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (01) : 173 - 180
  • [48] Spanning cactus existence in generalized Petersen graphs
    Daripa, Krishna
    INNOVATIONS IN SYSTEMS AND SOFTWARE ENGINEERING, 2022,
  • [49] Cyclic base ordering of generalized Petersen graphs
    Gu, Xiaofeng
    Zhang, William
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (02)
  • [50] On Distance-Balanced Generalized Petersen Graphs
    Ma, Gang
    Wang, Jianfeng
    Klavzar, Sandi
    ANNALS OF COMBINATORICS, 2024, 28 (01) : 329 - 349