LOWER BOUND ON THE NUMBER OF HAMILTONIAN CYCLES OF GENERALIZED PETERSEN GRAPHS

被引:1
|
作者
Lu, Weihua [1 ]
Yang, Chao [2 ]
Ren, Han [3 ,4 ]
机构
[1] Shanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R China
[2] Shanghai Univ Engn Sci, Sch Math Phys & Stat, Shanghai 201620, Peoples R China
[3] East China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
[4] Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
关键词
generalized Petersen graph; Hamiltonian cycle; partition number; 1-factor;
D O I
10.7151/dmgt.2141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the number of Hamiltonian cycles of a generalized Petersen graph P(N, k) and prove that psi(P(N, 3) >= N center dot alpha(N) where psi(P(N, 3)) is the number of Hamiltonian cycles of P(N, 3) and alpha(N) satisfies that for any epsilon > 0, there exists a positive integer M such that when N > M, ((1-epsilon)(1-r(3))/6r(3)+5r(2)+3)(1/r)(N+2) < alpha N < ((1+epsilon)(1-r(3))/6r(3)+5r(2)+3)(1/r)(N+2), where 1/r = max {vertical bar 1/r (j)vertical bar j = 1, 2,..., 6} and each r(j) is a root of equation x(6) + x(5) + x(3) - 1 = 0, r approximate to 0.782. This shows that psi(P(N, 3) is exponential in N and also deduces that the number of 1-factors of P(N, 3) is exponential in N.
引用
收藏
页码:297 / 305
页数:9
相关论文
共 50 条
  • [31] Beyond symmetry in generalized Petersen graphs
    Garcia-Marco, Ignacio
    Knauer, Kolja
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (02) : 331 - 357
  • [32] Jacobsthal Numbers in Generalized Petersen Graphs
    Bruhn, Henning
    Gellert, Laura
    Guenther, Jacob
    JOURNAL OF GRAPH THEORY, 2017, 84 (02) : 146 - 157
  • [33] Beyond symmetry in generalized Petersen graphs
    Ignacio García-Marco
    Kolja Knauer
    Journal of Algebraic Combinatorics, 2024, 59 : 331 - 357
  • [34] POWER DOMINATION IN THE GENERALIZED PETERSEN GRAPHS
    Zhao, Min
    Shan, Erfang
    Kang, Liying
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (03) : 695 - 712
  • [35] INJECTIVE COLORING OF GENERALIZED PETERSEN GRAPHS
    Li, Zepeng
    Shao, Zehui
    Zhu, Enqiang
    HOUSTON JOURNAL OF MATHEMATICS, 2020, 46 (01): : 1 - 12
  • [36] On the Hamilton connectivity of generalized Petersen graphs
    Alspach, Brian
    Liu, Jiping
    DISCRETE MATHEMATICS, 2009, 309 (17) : 5461 - 5473
  • [37] On graceful coloring of generalized Petersen graphs
    Kristiana, A. I.
    Setyawan, D.
    Albirri, E. R.
    Prihandini, R. M.
    Alfarisi, R.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (07)
  • [38] GRAPHS WITH FEW HAMILTONIAN CYCLES
    Goedgebeur, Jan
    Meersman, Barbara
    Zamfirescu, Carol T.
    MATHEMATICS OF COMPUTATION, 2020, 89 (322) : 965 - 991
  • [39] HAMILTONIAN CYCLES IN REGULAR GRAPHS
    李皓
    ChineseScienceBulletin, 1989, (04) : 267 - 268
  • [40] CERTAIN OPERATION OF GENERALIZED PETERSEN GRAPHS HAVING LOCATING-CHROMATIC NUMBER FIVE
    Irawan, Agus
    Asmiati
    Suharsono, S.
    Muludi, Kurnia
    Zakaria, La
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2020, 24 (02): : 83 - 97