LOWER BOUND ON THE NUMBER OF HAMILTONIAN CYCLES OF GENERALIZED PETERSEN GRAPHS

被引:1
|
作者
Lu, Weihua [1 ]
Yang, Chao [2 ]
Ren, Han [3 ,4 ]
机构
[1] Shanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R China
[2] Shanghai Univ Engn Sci, Sch Math Phys & Stat, Shanghai 201620, Peoples R China
[3] East China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
[4] Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
关键词
generalized Petersen graph; Hamiltonian cycle; partition number; 1-factor;
D O I
10.7151/dmgt.2141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the number of Hamiltonian cycles of a generalized Petersen graph P(N, k) and prove that psi(P(N, 3) >= N center dot alpha(N) where psi(P(N, 3)) is the number of Hamiltonian cycles of P(N, 3) and alpha(N) satisfies that for any epsilon > 0, there exists a positive integer M such that when N > M, ((1-epsilon)(1-r(3))/6r(3)+5r(2)+3)(1/r)(N+2) < alpha N < ((1+epsilon)(1-r(3))/6r(3)+5r(2)+3)(1/r)(N+2), where 1/r = max {vertical bar 1/r (j)vertical bar j = 1, 2,..., 6} and each r(j) is a root of equation x(6) + x(5) + x(3) - 1 = 0, r approximate to 0.782. This shows that psi(P(N, 3) is exponential in N and also deduces that the number of 1-factors of P(N, 3) is exponential in N.
引用
收藏
页码:297 / 305
页数:9
相关论文
共 50 条
  • [21] On the reliability of generalized Petersen graphs
    Ekinci, Gulnaz Boruzanli
    Gauci, John Baptist
    DISCRETE APPLIED MATHEMATICS, 2019, 252 : 2 - 9
  • [22] Domination in generalized Petersen graphs
    Zelinka, B
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2002, 52 (01) : 11 - 16
  • [23] Skewness of generalized Petersen graphs and related graphs
    Gek Ling Chia
    Chan Lye Lee
    Frontiers of Mathematics in China, 2012, 7 : 427 - 436
  • [24] Skewness of generalized Petersen graphs and related graphs
    Chia, Gek Ling
    Lee, Chan Lye
    FRONTIERS OF MATHEMATICS IN CHINA, 2012, 7 (03) : 427 - 436
  • [25] ON THE SIGNED TOTAL DOMINATION NUMBER OF GENERALIZED PETERSEN GRAPHS P(n, 2)
    Li, Wen-Sheng
    Xing, Hua-Ming
    Sohn, Moo Young
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (06) : 2021 - 2026
  • [26] On Adjacent Vertex-Distinguishing Total Chromatic Number of Generalized Petersen Graphs
    Zhu, Enqiang
    Jiang, Fei
    Li, Zepeng
    Shao, Zehui
    Xu, Jin
    2016 IEEE FIRST INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC 2016), 2016, : 230 - 234
  • [27] Hamilton paths in generalized Petersen graphs
    Richter, R. Bruce
    DISCRETE MATHEMATICS, 2013, 313 (12) : 1338 - 1341
  • [28] α-LABELINGS OF A CLASS OF GENERALIZED PETERSEN GRAPHS
    Benini, Anna
    Pasotti, Anita
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (01) : 43 - 53
  • [29] Vertex domination of generalized Petersen graphs
    Ebrahimi, B. Javad
    Jahanbakht, Nafiseh
    Mahmoodian, E. S.
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4355 - 4361
  • [30] On the total coloring of generalized Petersen graphs
    Dantas, S.
    de Figueiredo, C. M. H.
    Mazzuoccolo, G.
    Preissmann, M.
    dos Santos, V. F.
    Sasaki, D.
    DISCRETE MATHEMATICS, 2016, 339 (05) : 1471 - 1475