EXISTENCE OF SOLUTIONS TO A NEW CLASS OF COUPLED VARIATIONAL-HEMIVARIATIONAL INEQUALITIES

被引:2
作者
Bai, Y. U. N. R. U. [1 ]
Migorski, Stanislaw [1 ,2 ,3 ]
Nguyen, Van Thien [4 ]
Peng, J. I. A. N. W. E. N. [5 ]
机构
[1] Guangxi Univ Sci & Technol, Sch Sci, Liuzhou 545006, Peoples R China
[2] Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Peoples R China
[3] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, Krakow, Poland
[4] FPT Univ, Dept Math, Hanoi, Vietnam
[5] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
来源
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS | 2022年 / 6卷 / 05期
关键词
Clarke subgradient; Coupled variational-hemivariational inequalities; Nonemptiness and compactness; Tychonoff fixed point theorem;
D O I
10.23952/jnva.6.2022.5.05
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The objective of this paper is to introduce and study a complicated nonlinear system, called coupled variational-hemivariational inequalities, which is described by a highly nonlinear coupled sys-tem of inequalities on Banach spaces. We establish the nonemptiness and compactness of the solution set to the system. We apply a new proof based on a multivalued version of the Tychonoff fixed point principle in a Banach space combined with the generalized monotonicity arguments, and the elements of the nonsmooth analysis. Our results improve and generalize some earlier theorems obtained for a particular form of the system.
引用
收藏
页码:499 / 516
页数:18
相关论文
共 25 条
[1]  
[Anonymous], 1993, MATH SCI ENG
[2]   Regularized equilibrium problems with application to noncoercive hemivariational inequalities [J].
Chadli, O ;
Schaible, S ;
Yao, JC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 121 (03) :571-596
[3]  
Denkowski Z., 2003, INTRO NONLINEAR ANAL
[4]  
Denkowski Z., 2003, INTRO NONLINEAR ANAL, DOI [10.1007/978-1-4419-9158-4, DOI 10.1007/978-1-4419-9158-4]
[5]  
Gasinski L., 2006, NONLINEAR ANAL
[6]   Hemivariational Inequality Approach to Evolutionary Constrained Problems on Star-Shaped Sets [J].
Gasinski, Leszek ;
Liu, Zhenhai ;
Migorski, Stanislaw ;
Ochal, Anna ;
Peng, Zijia .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 164 (02) :514-533
[7]  
Granas A., 2003, FIXED POINT THEOR-RO, DOI [10.1007/978-0-387-21593-8, DOI 10.1007/978-0-387-21593-8]
[8]   SINGULAR PERTURBATIONS OF VARIATIONAL-HEMIVARIATIONAL INEQUALITIES [J].
Han, Weimin .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) :1549-1566
[9]   A CLASS OF VARIATIONAL-HEMIVARIATIONAL INEQUALITIES WITH APPLICATIONS TO FRICTIONAL CONTACT PROBLEMS [J].
Han, Weimin ;
Migorski, Stanislaw ;
Sofonea, Mircea .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (06) :3891-3912
[10]  
Kamenski M., 2001, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces