q-KP hierarchy, bispectrality and Calogero-Moser systems

被引:27
作者
Iliev, P [1 ]
机构
[1] Univ Catholique Louvain, Dept Math, B-1348 Louvain, Belgium
关键词
KP hierarchy; q-deformations; Tau functions; q-pseudo-difference operators;
D O I
10.1016/S0393-0440(00)00006-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that there is a one-to-one correspondence between the q-tau functions of a q-deformation of the KP hierarchy and the planes in Sate Grassmannian Gr. Using this correspondence, we define a subspace Gr(q)(ad) of Gr, which is a q-deformation of Wilson's adelic Grassmannian Gr(ad). From each plane W is an element of Gr(q)(ad) we construct a bispectral commutative algebra A(W)(q), Of q-difference operators, which extends to the case q not equal 1 all rank one solutions to the bispectral problem. The common eigenfunction Psi(x, z) for the operators from A(W)(q) is a q-wave (Baker-Akhiezer) function for a rational (in x) solution to the q-KP hierarchy. The poles of these solutions are governed by a certain q-deformation of the Calogero-Moser hierarchy. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:157 / 182
页数:26
相关论文
共 44 条
[1]   BIRKHOFF STRATA, BACKLUND-TRANSFORMATIONS, AND REGULARIZATION OF ISOSPECTRAL OPERATORS [J].
ADLER, M ;
VANMOERBEKE, P .
ADVANCES IN MATHEMATICS, 1994, 108 (01) :140-204
[2]   The solution to the q-KdV equation [J].
Adler, M ;
Horozov, E ;
van Moerbeke, P .
PHYSICS LETTERS A, 1998, 242 (03) :139-151
[3]   RATIONAL AND ELLIPTIC SOLUTIONS OF KORTEWEG DE-VRIES EQUATION AND A RELATED MANY-BODY PROBLEM [J].
AIRAULT, H ;
MCKEAN, HP ;
MOSER, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (01) :95-148
[4]  
[Anonymous], MEM AM MATH SOC
[5]   Bispectral algebras of commuting ordinary differential operators [J].
Bakalov, B ;
Horozov, E ;
Yakimov, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 190 (02) :331-373
[6]   Highest weight modules over the W1+∞ algebra and the bispectral problem [J].
Bakalov, B ;
Horozov, E ;
Yakimov, M .
DUKE MATHEMATICAL JOURNAL, 1998, 93 (01) :41-72
[7]   General methods for constructing bispectral operators [J].
Bakalov, B ;
Horozov, E ;
Yakimov, M .
PHYSICS LETTERS A, 1996, 222 (1-2) :59-66
[8]  
BAKALOV B, 1996, SERDICA MATH J, V22, P571
[9]   HUYGENS PRINCIPLE AND INTEGRABILITY [J].
BEREST, YY ;
VESELOV, AP .
RUSSIAN MATHEMATICAL SURVEYS, 1994, 49 (06) :5-77
[10]   On sturm-liouville polynomial systems [J].
Bochner, S .
MATHEMATISCHE ZEITSCHRIFT, 1929, 29 :730-736