Cost-sensitive positive and unlabeled learning

被引:17
|
作者
Chen, Xiuhua [1 ]
Gong, Chen [1 ,2 ]
Yang, Jian [1 ,3 ]
机构
[1] Nanjing Univ Sci & Technol, Key Lab Intelligent Percept & Syst High Dimens In, Sch Comp Sci & Engn, PCA Lab,Minist Educ, Nanjing, Peoples R China
[2] Hong Kong Polytech Univ, Dept Comp, Hong Kong, Peoples R China
[3] Jiangsu Key Lab Image & Video Understanding Socia, Minist Educ, Peoples R China
关键词
Positive and Unlabeled learning (PU learning); Class imbalance; Cost-sensitive learning; Generalization bound; SMOTE;
D O I
10.1016/j.ins.2021.01.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Positive and Unlabeled learning (PU learning) aims to train a binary classifier solely based on positively labeled and unlabeled data when negatively labeled data are absent or distributed too diversely. However, none of the existing PU learning methods takes the class imbalance problem into account, which significantly neglects the minority class and is likely to generate a biased classifier. Therefore, this paper proposes a novel algorithm termed "Cost-Sensitive Positive and Unlabeled learning" (CSPU) which imposes different misclassification costs on different classes when conducting PU classification. Specifically, we assign distinct weights to the losses caused by false negative and false positive examples, and employ double hinge loss to build our CSPU algorithm under the framework of empirical risk minimization. Theoretically, we analyze the computational complexity, and also derive a generalization error bound of CSPU which guarantees the good performance of our algorithm on test data. Empirically, we compare CSPU with the state-of-the-art PU learning methods on synthetic dataset, OpenML benchmark datasets, and real-world datasets. The results clearly demonstrate the superiority of the proposed CSPU to other comparators in dealing with class imbalanced tasks. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:229 / 245
页数:17
相关论文
共 50 条
  • [21] Partial Example Acquisition in Cost-Sensitive Learning
    Sheng, Victor S.
    Ling, Charles X.
    KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2007, : 638 - 646
  • [22] Cost-Sensitive Learning Based on Bregman Divergences
    Santos-Rodriguez, Raul
    Guerrero-Curieses, Alicia
    Alaiz-Rodriguez, Rocio
    Cid-Sueiro, Jesus
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT I, 2009, 5781 : 12 - 12
  • [23] Cost-Sensitive Active Visual Category Learning
    Sudheendra Vijayanarasimhan
    Kristen Grauman
    International Journal of Computer Vision, 2011, 91 : 24 - 44
  • [24] Privacy-Preserving Cost-Sensitive Learning
    Yang, Yi
    Huang, Shuai
    Huang, Wei
    Chang, Xiangyu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (05) : 2105 - 2116
  • [25] Cost-Sensitive Active Visual Category Learning
    Vijayanarasimhan, Sudheendra
    Grauman, Kristen
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2011, 91 (01) : 24 - 44
  • [26] RUE: A robust personalized cost assignment strategy for class imbalance cost-sensitive learning
    Zhou, Shanlin
    Gu, Yan
    Yu, Hualong
    Yang, Xibei
    Gao, Shang
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (04) : 36 - 49
  • [27] Cost-Sensitive Local Binary Feature Learning for Facial Age Estimation
    Lu, Jiwen
    Liong, Venice Erin
    Zhou, Jie
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) : 5356 - 5368
  • [28] Cost-sensitive learning for imbalanced medical data: a review
    Araf, Imane
    Idri, Ali
    Chairi, Ikram
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (04)
  • [29] Cost-Sensitive Boosting
    Masnadi-Shirazi, Hamed
    Vasconcelos, Nuno
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (02) : 294 - 309
  • [30] A Novel Minority Cloning Technique for Cost-Sensitive Learning
    Jiang, Liangxiao
    Qiu, Chen
    Li, Chaoqun
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2015, 29 (04)